Structural

Science

ISSN 0108-7681

Electronics Laboratory, Kaneka Corporation, 5-1-1, Torikai-Nishi, Setsu, Osaka, 566-0072,

Fumihito Mohri

 JapanCorrespondence e-mail:
fmohri@mb.infoweb.ne.jp
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Molecular orbital study of the bond-valence sum rule using Lewis-electron pair theory

The bond-valence sum rule has been examined by molecularorbital methods related to spin-coupling matrix theory [Okada \& Fueno (1976). Bull. Chem. Soc. Jpn, 49, 1524-1530], to give a new formulation of the Lewis-electron pair concept. It is shown that the 'pair-coupling population' between atoms M and X exhibits the same behaviour as the bond valence between them. A quantum chemical definition for bond valence is proposed and successfully applied to $\mathrm{Al}_{2} \mathrm{Cl}_{6}, \mathrm{Te}_{4} \mathrm{Cl}_{16}$ and $\mathrm{Al}_{2} \mathrm{Be}_{3}\left(\mathrm{SiO}_{3}\right)_{6}$ (beryl). Using an alternative bond-valence definition it is shown that for oxides the bond valence can possibly be taken as the double pair-coupling population.

1. Introduction

The bond-valence sum rule is becoming increasingly important in inorganic chemistry (Brown, 2002). The present work aims to clarify the origin of this rule, by applying to inorganic crystals 'molecular theories' representing the concepts and methods that have been used in the study of molecules (Julg, 1978). Since Pauling (1929) the bond-valence sum rule has often been interpreted using the ionic model. However, typical compounds to which the rule is applicable are oxides consisting of O atoms and the electropositive atoms such as $\mathrm{Be}, \mathrm{B}, \mathrm{Al}, \mathrm{Si}, \mathrm{P}$ and S. Since these atoms have electronegativity values lying between $1.5(\mathrm{Be}, \mathrm{Al})$ and $2.5(\mathrm{~S})$, corresponding to bonds with oxygen having between 37 and 78% covalent character, ${ }^{1}$ the ionic model is unrealistic. Actually, there are some studies suggesting that the bond valence originates from the covalent bond interaction. The Brown-Altermatt formula (Brown \& Altermatt, 1985), the most commonly used empirical relation, originates from the relation for carboncarbon bonds (Pauling, 1960). The previous work of Mohri (2000), hereinafter referred to as Part I, shows that it is possible to apply the bond-valence sum rule to organic compounds with carbon-carbon bonds. Lendvay (1989) regarded the quantity from the Brown-Altermatt formula as a kind of 'bond order' and used it in his molecular-orbital study. Brown \& Shannon (1973) pointed out that the bond valence is directly related to the covalent character of metal-oxygen

[^0]Received 6 October 2002
Accepted 30 January 2003
bonds. Gibbs (1982) found a linear correlation between bond valence and Mulliken overlap population (Mulliken, 1955), which is a measure of covalent bond strength. Accordingly, the present work looks for the theoretical basis of the covalent interpretation of the bond-valence-sum rule and pursues the quantum mechanical quantity (called \boldsymbol{x} in this section) that satisfies the following three requirements:
(i) for pure covalent bonds such as the carbon-carbon bond in an organic compound, \boldsymbol{x} is numerically identical to the classical bond order (throughout this paper, the terms 'classical bond order' and 'classical valence' represent those proposed in the 19 th century ${ }^{2}$);
(ii) the sum of \boldsymbol{x} around the central atom in a polyhedron (this term includes molecules and polyatomic ions in this paper) is conserved even if the polyhedron is distorted from its regular shape, and even if the coordination number changes (this requirement is the implicit proposition for the bondvalence sum rule);
(iii) the bond distance dependence of \boldsymbol{x} agrees with the empirical relations (Brown \& Altermatt, 1985; Mohri, 2000). Theoretical studies on the bond-valence sum rule other than those referred to above have been reported by Burdett \& McLarnan (1984), Urusov (1995), Jansen et al. (1992), Burdett \& Hawthorn (1993), Rutherford (1998) and Preiser et al. (1999). These are quite different from the present work in approach and give no quantity satisfying the three requirements mentioned above.

Since a covalent bond is considered to be formed by sharing Lewis-electron pairs, any theory of the Lewis-electron pair should clarify the theoretical background of the bond-valence sum rule. Okada \& Fueno $(1975,1976)$ proposed the 'spincoupling matrix theory', which enables us to analyse Lewiselectron pair populations in molecules, not requiring electronpair localization, and not using the resonance concept (Pauling, 1960). The next section introduces the essential points of the spin-coupling matrix theory, because this theory is little known. ${ }^{3}$ Only closed-shell systems are dealt with throughout this paper. Polyhedra concerned in this paper are those containing one type of ligand atom (they are called 'homoligand polyhedra' in Part I).

2. Spin-coupling matrix theory and valence

2.1. Theory

Wiberg (1968) found a molecular-orbital quantity whose numerical behaviour is the same as the classical bond order (examples will be shown later). This quantity was used as a 'bond index' (Armstrong et al., 1973), but its theoretical background was left unclear. Okada \& Fueno $(1975,1976)$ thought that this index should be derived from an extended theory of the Lewis-electron pair concept. The author

[^1]understands that the basic premise of Okada and Fueno comes from their opinion that the conventional Lewis-electron pair concept does not obey the Probability Interpretation of quantum mechanics. A Lewis-electron pair is a kind of quantum-mechanical particle pair whose space distribution should be formulated in terms of two-particle probability: this is the probability of finding one particle $\mathbf{1}$ with spin s_{1} in a volume $d v_{1}$ around position $\boldsymbol{r}_{\mathbf{1}}$ and another particle $\mathbf{2}$ with spin s_{2} in a volume $d v_{2}$ around position $\boldsymbol{r}_{\mathbf{2}}$, when all other particles may occupy arbitrary spin-orbitals (Löwdin, 1955a,b). Chemists know that the one-electron distribution should be formulated as a probability; for example, 'the number of electrons' belonging to an atomic orbital indicates the probability of finding electrons on the atomic orbital. Nevertheless, when referring to Lewis-electron pairs, almost no chemists have been conscious of the two-particle probability. Thus, Okada and Fueno argue that the conventional concept of the Lewis-electron pairs is inappropriate and that its appropriate definition should be as the two-particle probability in terms of the quantum-mechanical second-order density matrix (Löwdin, 1955a,b). Using this logic, they pursued a general formulation which can be defined for any approximation theory ($a b$ initio Hartree-Fock molecular-orbital theory, Hückel molecular-orbital theory, density-functional theory, valence-bond theory etc.) for electronic state calculation of many-electron systems (such a formulation is called 'approx-imation-free formulation'). They succeeded in finding it by:
(i) applying the 'spin-coupling operator $(-4 / 3) S\left(\sigma_{1}\right) \cdot S\left(\sigma_{2}\right)$ ', to the second-order density matrix that expresses the distribution of all types of electron-pairs (including the up-spin upspin pairs and the down-spin down-spin pairs) and then
(ii) integrating over spin coordinates σ_{1} and σ_{2}.

Moreover, Okada \& Fueno (1976) expressed the population analysis for Lewis-electron pairs within the framework of the LCAO-MO method.

When the total wavefunction of a closed-shell system with N electrons is approximated by a single Slater determinant, the pair-coupling population on an atomic orbital $\chi_{r}, Q_{r r}^{0}$, and that between atomic orbitals χ_{r} and $\chi_{s}, Q_{r s}^{0}$, are expressed as follows:

$$
\begin{equation*}
Q_{r r}^{0}=\frac{1}{4}(\mathbf{P S})_{r r}^{2}, \quad Q_{r s}^{0}=\frac{1}{2}(\mathbf{P S})_{r s}(\mathbf{P S})_{s r}, \tag{1}
\end{equation*}
$$

where \mathbf{P} is the density matrix and \mathbf{S} is the overlap integral matrix. The elements of \mathbf{P} and \mathbf{S} are defined as $P_{r s}=2 \sum_{i}^{\mathrm{occ}} c_{i r} c_{i s}$ and $S_{r s}=\int \chi_{r} \chi_{s} \mathrm{~d} v$, respectively, where occ denotes the occupied molecular orbitals $\varphi_{i}(i=1,2, \ldots, N / 2)$ and $c_{i r}$ is the coefficient for atomic orbital χ_{r} in the molecular orbital $\varphi_{i} . Q_{r r}^{0}$ is the probability of finding a Lewis-electron pair on atomic orbital χ_{r}, so that it is called the 'ionic term' in the papers of Okada \& Fueno $(1975,1976) . Q_{r s}^{0}$ is the probability of finding a Lewis-electron pair in the 'overlap region $\chi_{r} \chi_{s}$ ', so that this is called the 'covalent term'. According to Mulliken population analysis (Mulliken, 1955), the orbital population q_{r} (electron population on atomic orbital χ_{r}) is defined as

Table 1
Some examples of Mulliken overlap population $\left(n_{A B}\right)$, Coulson bond order $\left(P_{A B}\right)$ and Okada bond order $\left(D_{A B}\right)$.

The suffix ' $A B$ ' is a symbol for a bonded atom pair. ' $A b$ initio' denotes $a b$ initio HF/STO-3G.
(i) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}$

	$n_{A B}($ ab initio $)$			$P_{A B}(\mathrm{CNDO})$			$D_{A B}($ ab initio $)$		

(ii) Sums of $n_{A B}, P_{A B}$ and $D_{A B}$ around the C atoms in $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$.

	$\Sigma n_{A B}($ ab initio $)$	$\Sigma P_{A B}(\mathrm{CNDO})$	$\Sigma D_{A B}($ ab initio $)$	$\Sigma D_{A B}(\mathrm{CNDO})$
$\mathrm{C}_{2} \mathrm{H}_{6}$	3.026	6.303	3.961	3.995
$\mathrm{C}_{2} \mathrm{H}_{4}$	2.764	5.988	3.968	3.992
$\mathrm{C}_{2} \mathrm{H}_{2}$	2.603	5.386	3.981	3.981

(iii) HF and $\mathrm{HF}_{2}{ }^{-}$, here $A=\mathrm{H}, B=\mathrm{F}$.

	$n_{A B}($ ab initio $)$	$P_{A B}(\mathrm{CNDO})$	$D_{A B}($ ab initio $)$	$D_{A B}(\mathrm{CNDO})$
HF	0.390	1.292	0.956	0.946
HF_{2}^{-}	0.233	0.897	0.487	0.457

The Wiberg bond index between atoms A and B is $\sum_{r}^{A} \sum_{s}^{B} P_{r s}^{2}$. The net charge on atom A, c_{A}, is defined as $c_{A}=Z_{A}^{C}-\sum_{r}^{A} q_{r}$, where Z_{A}^{C} is the core charge of the valence shell in atom A. The determination of whether an orbital is 'bonding or antibonding' is possible by checking the sign of the Coulson (Coulson, 1961) bond order $P_{A B}=\sum_{r}^{A} \sum_{s}^{B} P_{r s}$.

2.2. Bond order and valence

To introduce the quantity corresponding to classical bond order, the H_{2} molecule is taken as an example. Its bonding orbital is $\varphi=\left(\chi_{1}+\chi_{2}\right) /\left(2+2 S_{12}\right)^{1 / 2}$ [the ZDO form is $\left.\left(\chi_{1}+\chi_{2}\right) / 2^{1 / 2}\right]$. We can confirm that $Q_{11}^{0}=Q_{22}^{0}=1 / 4$, $Q_{12}^{0}=1 / 2$. Thus, only half of one electron-pair in the H_{2} molecule contributes to the $\mathrm{H}-\mathrm{H}$ bond. This is due to the well known fact that when no account is taken of the configura-

$$
\begin{equation*}
q_{r}=\sum_{s} P_{r s} S_{r s} \tag{2}
\end{equation*}
$$

There is the following relation among $q_{r}, Q_{r r}^{0}$ and $Q_{r s}^{0}$

$$
\begin{equation*}
q_{r}=2 Q_{r r}^{0}+\sum_{s(\neq r)} Q_{r s}^{0} \tag{3}
\end{equation*}
$$

The pair-coupling population on atom A and that between atoms A and B are obtained from

$$
\begin{equation*}
Q_{A A}^{0}=\sum_{r \geq s}^{A} Q_{r s}^{0}, \quad Q_{A B}^{0}=\sum_{r}^{A} \sum_{s}^{B} Q_{r s}^{0} . \tag{4}
\end{equation*}
$$

$Q_{A A}^{0}$ and $Q_{A B}^{0}$ are related to the atomic population q_{A} by

$$
\begin{equation*}
q_{A}=2 Q_{A A}^{0}+\sum_{B(\neq A)} Q_{A B}^{0} \tag{5}
\end{equation*}
$$

The net charge of atom A, c_{A}, is defined as $c_{A}=Z_{A}^{N}-q_{A}$, where Z_{A}^{N} is the nuclear charge of atom A. As $Q_{A B}^{0}$ is always positive, it is not helpful in assessing the nature of the interaction (bonding or anti-bonding) between A and B. This judgement is usually possible by checking the sign of the Mulliken overlap population $n_{A B}=2 \sum_{i}^{\mathrm{occ}} \sum_{r}^{A} \sum_{s}^{B} c_{i r} c_{i s} S_{r s}$.

When zero-differential overlap (ZDO) type molecular orbitals such as CNDO-MO [with respect to ZDO and CNDO (see Pople \& Segal, 1966, and references cited therein)] are chosen, the overlap integrals in (1) and (2) are set to be $S_{r r}=1$ and $S_{r s}=0(r \neq s)$. Thus, the relations corresponding to (1) and (3) are expressed as (6) and (7), respectively

$$
\begin{gather*}
Q_{r r}^{0}=\frac{1}{4} P_{r r}^{2}, \quad Q_{r s}^{0}=\frac{1}{2} P_{r s}^{2} \tag{6}\\
q_{r}=P_{r r}=\frac{1}{2} P_{r r}^{2}+\frac{1}{2} \sum_{s(\neq r)}^{A} P_{r s}^{2}+\frac{1}{2} \sum_{s}^{B} P_{r s}^{2} . \tag{7}
\end{gather*}
$$

tion interaction (CI), molecular-orbital theory overestimates the ionic contribution. ${ }^{4}$ As this example shows, since a pure single bond gives the covalent term of $1 / 2$, the double covalent term $\left(2 Q_{A B}^{0}\right)$ can be recognized as an extended definition for the classical bond order. Hereafter, $2 Q_{A B}^{0}$ is referred to as the 'Okada bond order' for closed-shell systems and denoted as

$$
\begin{equation*}
D_{A B} \equiv 2 Q_{A B}^{0}=\sum_{r}^{A} \sum_{s}^{B}(\mathbf{P S})_{r s}(\mathbf{P S})_{s r} \tag{8}
\end{equation*}
$$

The ZDO form is $D_{A B}=\sum_{r}^{A} \sum_{s}^{B} P_{r s}^{2}$ (the same as the Wiberg bond index). Note that the factor 2 in $2 Q_{A B}^{0}$ is valid only when CI is not included in molecular-orbital calculations.

Table 1 shows some examples of Mulliken overlap populations $\left(n_{A B}\right)$, Coulson bond orders $\left(P_{A B}\right)$ and Okada bond orders $\left(D_{A B}\right)$. From (i) and (ii) in Table 1, we can see that $D_{\mathrm{CC}^{\prime}}$ and D_{CH} are very close to the classical bond orders of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$, respectively. However, neither $n_{A B}$ nor $P_{A B}$ exhibits the same behaviour as the classical bond order. Moreover, they are not 'approximation-free quantities', i.e. $n_{A B}$ is valid only for LCAO-MOs constructed with non-orthogonalized basis functions, and $P_{A B}$ only for ZDO-type LCAO-MOs. Hence, neither $n_{A B}$ nor $P_{A B}$ can be candidates for the electronic expression of bond valence.

The present study defines the valence of atom A, V_{A}, as

$$
\begin{equation*}
V_{A}=\sum_{B(\neq A)} D_{A B} \tag{9}
\end{equation*}
$$

This follows the 'other theory' mentioned in §2.4. In this study a modification is introduced. Here, the CO_{2} molecule is taken as an example. $\mathrm{CNDO} / 2$ calculations for CO_{2} give $D_{\mathrm{CO}}=1.970$

[^2]$\left(P_{\mathrm{CO}}=3.307\right)$ and $D_{\mathrm{OO}^{\prime}}=0.300\left(P_{\mathrm{OO}^{\prime}}=-0.860\right)$, where the suffix OO^{\prime} denotes 'between two O atoms'. This $D_{\mathrm{OO}^{\prime}}$ value does not come from a covalent bond represented with 'bondline(s)': such Okada bond orders usually appear between nonbonded atoms. The bond valence is in principle defined only for atoms connected with bond line(s). Thus, in order to directly relate the Okada bond order to the bond valence, in this study the former is divided into a bond-line part, $D_{A B}$ (bond), and a non-bond-line part, $D_{A B}$ (non-bond). Using these quantities, the valence of atom A, V_{A}, is defined as
\[

$$
\begin{equation*}
V_{A}=\sum_{B(\neq A)} D_{A B}(\text { bond })+\sum_{B(\neq A)} D_{A B}(\text { non-bond }) . \tag{10}
\end{equation*}
$$

\]

The first term on the right side in (10) is called the bond-line part of the valence and is represented as V_{A}^{b}.

$$
\begin{equation*}
V_{A}^{b}=\sum_{B(\neq A)} D_{A B}(\text { bond }) . \tag{11}
\end{equation*}
$$

For $\mathrm{CO}_{2}, V_{C}^{b}=2 \times 1.970=3.940 . V_{C}$ is equal to V_{C}^{b} in this case, since there are no other atoms except the two O atoms. $V_{O}^{b}=$ $1.970, V_{O}=1.970+0.300=2.270$. The ratio V_{A}^{b} / V_{A} is regarded as a measure of 'Lewis-pair localization'. The maximum value of $V_{A}, V_{A}(\max)$, appears when every atomic orbital population is unity and it is expressed as

$$
\begin{equation*}
V_{A}(\max)=N_{\mathrm{AO}} \tag{12}
\end{equation*}
$$

where N_{AO} is the number of atomic orbitals of atom A involved in chemical bonding.

In the ZDO approximation, (10) can be expressed in terms of atomic orbital populations of only one atom (say, A)

$$
\begin{equation*}
V_{A} \simeq \sum_{r}^{A}\left(2 P_{r r}-P_{r r}^{2}\right) \tag{13}
\end{equation*}
$$

In this formula, the intra-atomic term in (7), (1/2) $\sum_{s(\neq r)}^{A} P_{r s}^{2}$, is neglected, because for the central atom in a polyhedron this term is usually much smaller than the $(1 / 2) \sum_{r}^{A} P_{r r}^{2}$ term. Hereafter, the wording 'covalent term' is not used, because $D_{A B}$ does not always arise from a covalent interaction, as mentioned above.

2.3. Relation to the valence and charge

This section illustrates the nature of the newly defined valence using (13). Fig. 1 shows $V_{r}=2 P_{r r}-P_{r r}^{2}$, where V_{r} represents 'the orbital valence' of atomic orbital χ_{r}. In the context of the conventional valence concept, we can obtain valence values only for the cases of $P_{r r}=0,1$ and 2 (the valences are 0,1 and 0 , respectively; see Fig. 1). The function V_{r} connects smoothly the three points at $P_{r r}=0,1$ and 2 . Hence, the newly defined valence is regarded as an extension of the classical valence.

In order to clarify the relationship between the valence and the atomic charge, we first take ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, as shown in Table 1. CNDO/2 results of the orbital populations on C and H in $\mathrm{C}_{2} \mathrm{H}_{6}$ are $(2 s)^{1.015}\left(2 p_{x}\right)^{0.980}\left(2 p_{y}\right)^{0.980}\left(2 p_{z}\right)^{1.030}$ and $(1 s)^{0.999}$, respectively. The valence of C is $V_{C}=2 \times 1.015-1.015^{2}+2 \times$ $\left(2 \times 0.980-0.980^{2}\right)+2 \times 1.030-1.030^{2}=3.998 \simeq 4$. The net
charge is $c_{C}=4-(1.015+2 \times 0.980+1.030)=-0.005 \simeq 0$. For the H atom, we obtain $V_{H} \simeq 1, c_{H} \simeq 0$. Almost the same results are obtained with other hydrocarbons. In these compounds, the 'zero-charge state' corresponds to the 'valence-satisfied state'.

Next we consider an example of an inorganic solid: Jellison et al. (1977) analysed the electronic state of $\mathrm{B}_{2} \mathrm{O}_{3}$ glass by means of NMR on B^{10}, B^{11} and O^{17} nuclei, making some assumptions. The main results are shown in Table 2. The results of $O(R)$ and B are analysed in this section (we will discuss again the $\mathrm{B}_{2} \mathrm{O}_{3}$ result in $\left.\S 5.6\right) . \mathrm{O}(\mathrm{R})$ is bonded to two B atoms (see Fig. 13). For $\mathrm{O}(\mathrm{R})$, the valence is $V_{O}=(2 \times 1.541-$ $\left.1.541^{2}\right) \times 2+\left(2 \times 2.000-2.000^{2}\right)+\left(2 \times 1.640-1.640^{2}\right)=$ 2.005. This is virtually equal to the classical valence of oxygen, whereas the net charge c_{O} is $6-(2 \times 1.541+2.000+1.640)=6$ $-6.732=-0.732$, which is significantly different from zero. Note that although this O atom is not in the zero-charge state, the valence is equal to its classical value. Similarly, the B atom has $V_{B}=2.945($ or 2.949$) \simeq 3$ (classical value) and $c_{B}=+1.027$ (non-zero charge). Thus, the newly defined valence permits the coexistence of the non-zero charge and the classical valence.

Additionally, note the results for $\mathrm{HF}_{2}{ }^{-}$shown in Table 1 (iii). D_{HF} for the $\mathrm{H}-\mathrm{F}$ bond in HF_{2}^{-}is about half that in the HF molecule. This means that the sum of D_{HF} around the bridging H atom, V_{H}, is close to the valence of a 'univalent H atom'. This is very similar to the bond-valence sum rule.

2.4. Another theory related to spin-coupling matrix theory

Several researchers have developed a similar theory independent of Okada and Fueno: Armstrong et al. (1973), Giambiagi et al. (1975), Mayer (1983, 1986a,b), Gopinathan \& Jug (1983a,b), Lendvay (1989) and Siddarth \& Gopinathan (1990). Their theory is called 'Giambiagi-Gopinathan-Mayer theory' (abbreviated as GGM theory throughout this paper). In this theory the quantity corresponding to $D_{A B}$ is usually expressed as $B_{A B}$ (Mayer, 1986a), whose definition is identical to (9). The valence defined as $V_{A}=\sum_{B(\neq A)} B_{A B}$ has often

Figure 1
The relationship between orbital population $\left(P_{r r}\right)$ and orbital valence $\left(V_{r}\right) ; V_{r}=2 P_{r r}-P_{r r}^{2}$ in ZDO form.

Table 2
Valence analysis for $\mathrm{B}_{2} \mathrm{O}_{3}$ glass using NMR data (Jellison et al., 1977).
Here, σ and σ^{\prime} denote $s p^{2}$ orbitals, l lone-pair orbitals and $\pi \pi$-orbitals. V and c are the total valence and the net charge, respectively.

Atom	$\sigma(\times 2)$	l	σ^{\prime}	π	V	c
$\mathrm{O}(\mathrm{R})$	1.541	$2.000 \dagger$		1.640	2.005	-0.732
B	0.562		0.489	0.360	2.945	1.027
\ddagger	0.539		0.535	0.360	2.949	1.027
$\mathrm{O}(\mathrm{C})$	1.504	$2.000 \dagger$		$2.000 \dagger$	1.492	-1.008

\dagger These populations are treated as an assumption by Jellison et al. (1977). \ddagger For the B atom two results are possible, owing to the 'sign-ambiguity' of the asymmetric factor for the electric field gradient.
been discussed in the papers on GGM theory (for example, Mayer, 1986a; Gopinathan \& Jug, 1983b). Although both the spin-coupling matrix theory and GGM theory have their origin in the Wiberg bond index, they are different in their theoretical structure. In GGM theory
(i) there is no recognition that the Wiberg bond index should be related to the spin coupling and consequently the spin-coupling operator quoted above is not used;
(ii) there is no interpretation of $B_{A B} / 2$ as the 'population of the Lewis-electron pairs', and
(iii) GGM theory is valid only in the framework of LCAOMO theory.
However, as far as LCAO-MO methods are concerned, and as long as $2 Q_{A B}^{0}$ is used as the bond order for closed-shell systems, both the spin-coupling matrix theory and GGM theory are the same, except that the ionic term $Q_{r r}^{0}$ is treated explicitly in the former. The present work uses the concepts, notations and terminology used in the spin-coupling matrix theory, but incorporates some results of studies using GGM theory.

3. Origin of valence conservation

3.1. The 'equal-population state'

Part I suggests that the conservation of the atomic population of the H atom in the hydrogen-bonded $\mathrm{Cl}-\mathrm{H} \cdots \mathrm{Cl}$ systems is closely related to the bond-valence sum rule. Moreover, X-ray charge density analysis for kernite [$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$; Cooper et al., 1973] shows that both trigonal and tetrahedral B atoms have almost the same atomic charges (0.53 and 0.54 , respectively). $\mathrm{B}-\mathrm{O}$ systems are among those for which the bond-valence sum rule holds well (Donnay \& Donnay, 1973). Hence, in this section we consider how to relate the atomic charge conservation to the valence conservation. The polyhedra concerned in this section and in $\S 3.2$ are those containing one type of ligand atom (hereafter called homo-ligand polyhedra). In $\S \S \S 3.1-3.3$, we consider the cases where $D_{A B}$ (non-bond) terms are neglected and thus the relation $V_{A}^{b}=V_{A}$ holds.

From (13), the small variation of $V_{A}, \delta V_{A}$, for the small variation of orbital populations $\delta P_{r r}$ is derived as

$$
\begin{equation*}
\delta V_{A}=2 \sum_{r}^{A}\left(1-P_{r r}\right) \delta P_{r r} \tag{14}
\end{equation*}
$$

The atomic population conservation is expressed as

$$
\begin{equation*}
\delta q_{A}=\sum_{r}^{A} \delta P_{r r}=0 \tag{15}
\end{equation*}
$$

The valence conservation $\delta V_{A}=0$ and the population conservation (15) do not in general coexist with each other, but in the special case where every orbital population $P_{r r}$ takes the same value (written as P^{0}), both conservation conditions can coexist

$$
\begin{equation*}
\delta V_{A}=2\left(1-P^{0}\right) \sum_{r}^{A} \delta P_{r r}=2\left(1-P^{0}\right) \delta q_{A}=0 \tag{16}
\end{equation*}
$$

Hereafter, this special case is called the equal-population state. Next, it will be shown that the equal-population state brings about the maximum covalent interaction and the minimum electron-electron repulsion, using the CNDO approximation (this approximation is useful for semi-quantitative energetic consideration, because in this approximation the whole electronic energy is decomposed into intraatomic parts and interatomic parts, and both are concretely expressed).

In the CNDO approximation the inter-atomic energy is expressed as

$$
\begin{equation*}
E_{A B}=\sum_{r}^{A} \sum_{s}^{B}\left(2 P_{r s} \beta_{r s}-\frac{1}{2} P_{r s}^{2} \gamma_{A B}\right)+\text { electrostatic energy } \tag{17}
\end{equation*}
$$

where $\beta_{r s}$ is the resonance integral and $\gamma_{A B}$ is the repulsion integral parameter between A and B. The second term in parenthesis is the 'inter-atomic exchange energy' and is connected to the pair-coupling population, $Q_{A B}^{0}$

$$
\begin{equation*}
E_{A B}^{\mathrm{exch}}=-\frac{1}{2} \sum_{r}^{A} \sum_{s}^{B} P_{r s}^{2} \gamma_{A B}=-Q_{A B}^{0} \gamma_{A B} \tag{18}
\end{equation*}
$$

If the polyhedron with atom A as the central atom is regular in shape, the total amount of $E_{A B}^{\text {exch }}$ around A is

$$
\begin{equation*}
\sum_{B} E_{A B}^{\mathrm{exch}}=-\gamma_{A B} \sum_{B} Q_{A B}^{0}=-\frac{1}{2} V_{A} \gamma_{A B} \tag{19}
\end{equation*}
$$

This states that the valence of the central atom contributes to the stability of the polyhedron through the exchange interaction. Here we consider what condition achieves the maximum valence for an atom A having $N_{\text {AO }}$ valence atomic orbitals and an atomic population of q_{A} (i.e. the electron population of atom A), where $\sum_{r=1}^{N_{\mathrm{AO}}} P_{r r}=q_{A}$ (here the summation symbol $\sum_{r=1}^{N_{\mathrm{AO}}}$ is used when the number of atomic orbitals is specified). Using $P_{r r}$ and (12), the valence of A, V_{A}, is written as

$$
\begin{equation*}
V_{A}=\sum_{r=1}^{N_{\mathrm{AO}}}\left(2 P_{r r}-P_{r r}^{2}\right) \tag{20}
\end{equation*}
$$

For a given atomic population q_{6} we obtain the orbital populations that achieve the maximum valence for A by using

Lagrange's undetermined multiplier method for the following F

$$
\begin{equation*}
F=\sum_{r=1}^{N_{\mathrm{AO}}}\left(2 P_{r r}-P_{r r}^{2}\right)-\mu\left(\sum_{r=1}^{N_{\mathrm{AO}}} P_{r r}-q_{A}\right) \tag{21}
\end{equation*}
$$

where μ is the undetermined multiplier. Conditions $\partial F / P_{r r}=0\left(r=1,2, \ldots, N_{\mathrm{AO}}\right)$ lead to the following simultaneous equations: $2-2 P_{r r}-\mu=0\left(r=1,2, \ldots, N_{\mathrm{AO}}\right)$. These equations lead to the solutions (22) and (23)

$$
\begin{gather*}
P_{r r}=\frac{q_{A}}{N_{\mathrm{AO}}}\left(r=1,2, \ldots, N_{\mathrm{AO}}\right) \tag{22}\\
V_{A}^{\max }\left(q_{A}\right)=\sum_{r=1}^{N_{\mathrm{AO}}}\left(2 \frac{q_{A}}{N_{\mathrm{AO}}}-\frac{q_{A}^{2}}{N_{\mathrm{AO}}^{2}}\right)=2 q_{A}-\frac{q_{A}^{2}}{N_{\mathrm{AO}}} \tag{23}
\end{gather*}
$$

where $V_{A}^{\max }\left(q_{A}\right)$ is the maximum valence at atomic population q_{A} [checking the second derivatives for (21) shows that (23) gives the maximum of $\left.V_{A}\left(q_{A}\right)\right]$.

Next, we relate the electron-electron repulsion to the spincoupling matrix theory. In the $C N D O$ approximation, the intra-atomic electron-electron repulsion for an atom A, $W_{\text {rep }}(A)$, is written explicitly as

$$
\begin{equation*}
W_{\text {rep }}(A)=\frac{1}{2} \sum_{r}^{A} \sum_{s}^{A}\left(P_{r r} P_{s s}-\frac{1}{2} P_{r s}^{2}\right) \gamma_{A A}, \tag{24}
\end{equation*}
$$

where $\gamma_{A A}$ is the repulsion integral on atom A, and the double summation includes $r=s$.

Among the terms in this repulsion energy, the term corresponding to $Q_{A A}^{0}$ is (1/4) $\sum_{r}^{A} P_{r r}^{2} \gamma_{A A}$ (hereafter, called 'intra-orbital-repulsion energy'). This repulsion energy is not the same as the inter-electron-pair repulsion energy ${ }^{5}$ used in the electron-pair repulsion model (Gillespie \& Nyholm, 1957). (Hereafter this principle is called the 'the electron-pair repulsion principle'.) However, the smaller repulsion should be energetically more advantageous for atom A and is therefore worth taking into account as a factor determining the stability of a polyhedron. For atom A, the intra-orbital repulsion energy, $E_{\text {rep }}$, is

$$
\begin{equation*}
E_{\text {rep }}=\frac{1}{4} \sum_{r}^{A} P_{r r}^{2} \gamma_{A A}=Q_{A A}^{0} \gamma_{A A} \tag{25}
\end{equation*}
$$

Through the same procedure as for V_{A} (here the number of atomic orbitals is specified as N_{AO}), we can arrive at the conclusion that $E_{\text {rep }}$ takes its minimum value, $E_{\text {rep }}^{\min }\left(q_{A}\right)$, when the equal-population state, $P_{r r}=q_{A} / N_{\mathrm{AO}}\left(r=1,2, \ldots, N_{\mathrm{AO}}\right)$, is achieved

$$
\begin{equation*}
E_{\mathrm{rep}}^{\min }\left(q_{A}\right)=\frac{1}{4 N_{\mathrm{AO}}} q_{A}^{2} \gamma_{A A}=Q_{A A}^{0}(\min) \gamma_{A A} \tag{26}
\end{equation*}
$$

where $Q_{A A}^{0}(\min)=1 /\left(4 N_{\mathrm{AO}}\right) q_{A}^{2}$ is the minimum of the ionic term $Q_{A A}^{0}=(1 / 4) \sum_{r=1}^{N_{\mathrm{AO}}} P_{r r}^{2}$. Equations (22), (23) and (26) indicate that the equal-population state brings the maximum valence (i.e. the lowest exchange energy) and the minimum intra-orbital repulsion together.

[^3]The discussion of (17) and (26) is not an exact proof that the equal-population state is energetically the most stable state for a central atom in a polyhedron, because the energy components influencing the valence and the geometrical structure of the system are not only $E^{\text {exch }}$ and $E_{\text {rep }}$, but also other types of energy (for example, inter-atomic electrostatic energy). However, the following inference leads to the conclusion that the equal-population state should be energetically the most stable state. The electron-repulsion principle requires that the arrangement of the electron-pairs around the central atom in a polyhedron should be as symmetric as possible. This requirement leads simultaneously to the equal-population state. Hence, since the electron-repulsion principle often succeeds in predicting molecular structures with energetically the most stable states, it can be concluded that the equal-population state is energetically the most stable state. This conclusion is valid for isolated polyhedra (i.e. molecules and complexes), but in this study it is considered that this conclusion can be applied in principle to polyhedra in crystals.

Strictly speaking, the equal-population state is not exactly realised even when the atom of interest is in a three-dimensionally symmetric environment, because the energy levels of atomic orbitals generally depend on the type of orbital (s, p, d, \ldots.$) . Therefore, the 'real equal-population state' takes the$ form $(s)^{\alpha}\left(p_{x}\right)^{\beta}\left(p_{y}\right)^{\beta}\left(p_{z}\right)^{\beta}$ (usually, $\alpha>\beta$), for example. When $\alpha=\beta$ holds for the population of $(s)^{\alpha}\left(p_{x}\right)^{\beta}\left(p_{y}\right)^{\beta}\left(p_{z}\right)^{\beta}$ (other atomic orbitals are not considered here) in a tetrahedral coordination, this atom has four $s p^{3}$ hybrid orbitals and simultaneously takes an equal-population state. In discussions of hybrid orbitals, the directionality of each hybrid orbital is usually emphasized. On the other hand, this work focuses on the 'equality of orbital population'.

3.2. Valence conservation in distorted polyhedra

In distorted polyhedra it is predicted that, in general, the equal-population state of the central atom is no longer maintained and the valence should decrease from its maximum (note that the distorted structures considered here are equilibrium structures). We consider the relationship between the changes in the orbital populations, the valence $\left(V_{A}\right)$ and the intra-orbital repulsion $\left(E_{\text {rep }}\right)$. Here, we do not explicitly treat the non-symmetric arrangement of the ligand atoms. Instead, we treat the change in the electron population of the atomic orbitals. Let us represent the change in the ratio of the electron population on atomic orbital χ_{r} on atom A, k_{r} ($r=1,2, \ldots, N_{\mathrm{AO}}$), supposing that $\left|k_{r}\right|<1$ and the atomic population before distortion is q_{0}. Each orbital population on A in a distorted polyhedron can be written as $P_{r r}=\left(q_{0} / N_{\mathrm{AO}}\right)\left(1+k_{r}\right)$. Substituting $P_{r r}$ leads to (27) and (28), respectively

$$
\begin{align*}
V_{A}= & V_{A}^{\max }\left(q_{0}\right)+\frac{2}{N_{\mathrm{AO}}}\left(q_{0}-\frac{q_{0}^{2}}{N_{\mathrm{AO}}}\right) \sum_{r=1}^{N_{\mathrm{AO}}} k_{r} \\
& -\left(\frac{q_{0}}{N_{\mathrm{AO}}}\right)^{2 N_{\mathrm{AO}}} \sum_{r=1}^{2} k_{r}^{2} \tag{27}
\end{align*}
$$

$$
\begin{align*}
E_{\text {rep }}= & E_{\mathrm{rep}}^{\min }\left(q_{0}\right)\left(1+\frac{2}{N_{\mathrm{AO}}} \sum_{r=1}^{N_{\mathrm{AO}}} k_{r}\right) \\
& +\frac{1}{4} \gamma_{A A}\left(\frac{q_{0}}{N_{\mathrm{AO}}}\right) \sum_{r=1}^{2 N_{\mathrm{AO}}} k_{r}^{2} . \tag{28}
\end{align*}
$$

The terms for $\sum_{r=1}^{N_{\mathrm{AO}}} k_{r}^{2}$ in (27) and (28) are related to the sum of squares of the orbital population deviations, δ_{q}^{2}

$$
\begin{equation*}
\delta_{q}^{2}=\sum_{r=1}^{N_{\mathrm{AO}}}\left(P_{r r}-q_{0} / N_{\mathrm{AO}}\right)^{2}=\left(q_{0} / N_{\mathrm{AO}}\right)^{2} \sum_{r=1}^{N_{\mathrm{AO}}} k_{r}^{2} \tag{29}
\end{equation*}
$$

Equations (27), (28) and (29) indicate that when the atomic population $\left(q_{0}\right)$ is constant $\left(\sum_{r=1}^{N_{\mathrm{AO}}} k_{r}=0\right)$, the occurrence of non-equal orbital populations always heightens both the exchange energy and the intra-orbital repulsion energy. Thus, the central atom tends to maintain its equal-population state, even if distortion of the polyhedron takes place. In other words, atoms in molecules or crystals tend to make their electron population states as spherical as possible.

Next we consider the effect of the atomic population change (q_{0}-change, the case where $\sum_{r=1}^{N_{\text {AO }}} k_{r}$ varies). When atom A is an electropositive atom, the inequality $q_{0}-q_{0}^{2} / N_{\mathrm{AO}}>0$ (i.e. $q_{0}<N_{\mathrm{AO}}$, the case corresponding to $P_{r r}<1$ in Fig. 1) usually holds. In this case, the increase in atomic population brings an increase in V_{A} and consequently lowers the interatomic exchange energy $E^{\text {exch }}$. However, the increase in the atomic population heightens the intra-orbital repulsion energy $E_{\text {rep }}$. The decrease in atomic population lowers the repulsion energy, but raises $E^{\text {exch }}$. Such opposite behaviours of the two types of energy should act as a 'controller' of the q_{0} change. Hence, even if the polyhedra are distorted to other equilibrium structures, the valences of electropositive atoms tend to be conserved, and their orbital population states tend not to lie far from their equal-population states. In electronegative atoms where the inequality $q_{0}-q_{0}^{2} / N_{\mathrm{AO}}<0 \quad\left(q_{0}>N_{\mathrm{AO}}\right.$, $P_{r r}>1$ in Fig. 1) holds, both $E_{\text {rep }}$ and $E^{\text {exch }}$ exhibit a parallel behaviour to q_{0} change. Thus, both energies make the case of the V_{A} increase (q_{0} decrease) energetically advantageous. Since the electronic structures of polyhedra are determined not only with $E_{\text {rep }}$ and $E^{\text {exch }}$, the V_{A} increase may not always be realised. However, at least a V_{A} decrease, which is the case where atomic charges become more negative, should be unlikely. Thus, we have seen that the q_{0}-change effect depends on the type of atom. The actual valences of electropositive and electronegative atoms in crystals may be determined by 'compromise' between these atoms.

Additionally, in atoms where the equation $q_{0}-q_{0}^{2} / N_{\mathrm{AO}}=0$ ($q_{0}=N_{\mathrm{AO}}, P_{r r}=1$ in Fig. 1) holds, their valences are well conserved even with changes in the atomic charge. Examples of such atoms are C atoms $\left(N_{\mathrm{AO}}=4, q_{0} \simeq 4, V_{C} \simeq 4\right)$ and H atoms $\left(N_{\mathrm{AO}}=1, q_{0} \simeq 1, V_{H} \simeq 1\right)$ in hydrocarbons.

3.3. Valence conservation for coordination number change

Valence conservation for coordination number change is expressed by

$$
\begin{equation*}
V_{M X}^{b}\left(v_{1}\right)=V_{M X}^{b}\left(v_{2}\right) \tag{30}
\end{equation*}
$$

Here, ν_{1} and ν_{2} are coordination numbers for $M X_{\nu 1}$ and $M X_{\nu 2}$ polyhedra, respectively.

When, these polyhedra are regular in shape, (30) is explicitly represented as

$$
\begin{equation*}
v_{1} D_{M X}\left(v_{1}\right)=v_{2} D_{M X}\left(v_{2}\right) \tag{31}
\end{equation*}
$$

Here, $D_{M X}(v)$ is the Okada bond order for the $M-X$ bond in $M X_{v}$. At the present stage, the theoretical derivation of (30) is not given, but it will be numerically examined in $\S 5$. Hereafter, we assume that (30) and (31) hold well.

3.4. Quantum chemical definitions of bond valence

We consider the bond valence definition in terms of Okada bond order. In (31), when v_{1} is equal to the absolute value of the oxidation number of M, Z_{M} (such an example is the Si atom of an SiO_{4} tetrahedron in a mineral), the relation $Z_{M} / v_{2}=D_{M X}\left(v_{2}\right) / D_{M X}\left(Z_{M}\right)$ is obtained. Here, Z_{M} / v_{2} is Pauling's electrostatic bond strength. From this relation, we can draw the inference that the bond valence can be defined as the ratio of the Okada bond order to that for the 'reference system'. This inference leads to the following expression for the bond-valence sum rule

$$
\begin{equation*}
s_{M X}=\frac{D_{M X}}{D_{M X}(\mathrm{ref})}, \sum_{M} s_{M X}=Z_{X} \tag{32}
\end{equation*}
$$

Here, $D_{M X}($ ref $)$ is the Okada bond order of the reference system. The problem is how to define the reference systems: here the Brown-Shannon definition (Brown \& Shannon, 1973) is chosen. In this definition the reference systems are taken as experimentally determined polyhedra and the 'reference bond valences' are defined as the Pauling electrostatic bond strengths. For example, the reference system for $\mathrm{Al}^{3+}-\mathrm{O}^{2-}$ is a regular AlO_{6} octahedron with an $\mathrm{Al}-\mathrm{O}$ distance of $1.91 \AA$ and its reference bond valence is set to be $3 / 6=0.5$. The author understands that this reference bondvalence determination is 'scaling D_{AlO} to $3 / 6$ '. Hence, $D_{M X}\left(\right.$ ref) in (32) is taken as $D_{M X}\left(v_{\text {ref }}\right) / s_{M X}^{0}$, where $v_{\text {ref }}$ is the coordination number for the reference system (polyhedron) and $s_{M X}^{0}$ is $Z_{M} / v_{\text {ref. }}$. Using this reference bond valence, the bond-valence sum rule is expressed as

$$
\begin{equation*}
s_{M X}=s_{M X}^{0} \frac{D_{M X}}{D_{M X}\left(v_{\mathrm{ref}}\right)}, \sum_{M} s_{M X}=Z_{X} \tag{33}
\end{equation*}
$$

This definition of the bond valence, $s_{M X}$, is 'the relative definition of bond-valence' in this paper. If the proportionality $V_{A}^{b} \propto Z_{A}$ (here, A denotes every atom in a crystal) holds numerically, (33) will be justified.

Next, we consider an alternative expression for the bondvalence sum rule. See et al. (1998) emphasized that the bondvalence sum (they called it the 'bond-order sum') depends on the specific ligands. The idea of 'specific ligand dependence of the bond-valence sum' originates only from the covalent interpretation of the bond-valence sum rule, because in the ionic interpretation of the rule the bond-valence sum around M should be equal to Z_{M} for any ligand atom X. If we define
the bond valence as the quantity exhibiting the specific ligand dependence, a probable expression is

$$
\begin{equation*}
s_{M X}=D_{M X}, \sum_{X} s_{M X}=V_{M}^{b}, \sum_{M} s_{M X}=V_{X}^{b} \tag{34}
\end{equation*}
$$

That is, the bond valence is the Okada bond order itself and the bond-valence sum is identical to $V_{A}^{b}(A=M, X)$. Here, it is not necessary to distinguish between the 'electropositive atom' and the 'electronegative atom'. We call this definition 'the absolute definition of bond valence'. In this definition the reference system is no longer necessary. It is unlikely that valences $\left(V_{A}^{b}\right)$ take the same values of Z_{A}, in general, because the nature of the bond $A-B$ depends on atom B. However, if the relation $V_{A}^{b} \simeq Z_{A}$ holds numerically in minerals such as the oxides to which the bond-valence sum rule has been successfully applied, (34) can be regarded as a definition of the bondvalence sum rule. Clearly, this definition is chemically more significant than the relative definition, because chemical bondrelated quantities (bond distance, normal vibration frequency etc.) are governed not by the 'relative bond order', but by the absolute bond order. In the following sections the relative definition of bond valence will be examined and finally the absolute definition will be explored.

4. Calculation methods for the pair-coupling population

A molecular-orbital program that is appropriate to the purpose of the present study should satisfy the following requirements:
(i) it must be easily applicable to every type of compound, not only organic compounds but also inorganic compounds including transition metal complexes and metal alloys;
(ii) it can calculate the Lewis-pair populations $\left(Q_{A A}^{0}, Q_{A B}^{0}\right)$;
(iii) it can perform geometry optimization, in order to obtain the exact relationship between Okada bond order and bond distance for the equilibrium structure.
There is no program that satisfies (i), (ii) and (iii) simultaneously. Hence, the following three programs are used in this study: DVSCAT for (i), LWSPR for (ii) and PC-GAMESS for (iii).

DVSCAT (Adachi et al., 1978; Kowada et al., 1998) is an implementation of the DVX_{α} method (discrete variational X_{α} method; Adachi et al., 1978). This program generates numerical basis functions (these are treated as minimal basis functions), so that skill in selecting basis functions is not needed. Electrically neutral atoms were taken as initial atomic states at the start of the SCF calculation. One thousand sample points per atom were used for numerical integration. LWSPR (Nakagawa, 2000) is an auxiliary program which operates on a file output from $D V S C A T$ to yield $Q_{A A}^{0}$ and $Q_{A B}^{0}$. The present version of $L W S P R$ is applicable only to closed-shell systems.

PC-GAMESS (Granovsky, 1999) is the personal computer version of the GAMESS (US) QC package (Schmidt et al., 1993), which is an implementation of the ab initio HartreeFock molecular-orbital method (hereafter, abbreviated as $a b$ initio HF). The geometry optimization condition chosen was
the default one with 1×10^{-5} Hartree Bohr^{-1} of the maximum energy gradient for the Cartesian coordinates of atoms. Minimal basis functions of STO-3G and STO-3G* (STO-3G plus Cartesian- d-type polarization functions) were used for H to F and for Al to Cl , respectively, because these 'crude' basis functions can accurately reproduce observed molecular structures (Davidson \& Feller, 1986; Tossel, 1987) within short computational times. In some cases the more precise $3-21 \mathrm{G}\left(3-21 \mathrm{G}^{*}\right)$ and $6-31 \mathrm{G}\left(6-31 \mathrm{G}^{*}\right)$ basis functions were used.

In fact, $P C$-GAMESS gives q_{A} and $B_{A B}$ (corresponding to $D_{A B}$) by default. Nevertheless, $D V S C A T$ was used for the calculations of the Lewis-pair-related quantities $\left(q_{A}, Q_{A A}^{0}\right.$, $\left.Q_{A B}^{0}\right)$. The reason for this choice is that the author thinks that DVSCAT is more appropriate than ab initio HF methods for the purpose of the Lewis-pair population analysis (see Appendix A). All the molecular-orbital calculations in this work were performed on personal computers with MSWindows95/98/ME/2000.

5. Discussion

5.1. Examination of the valence conservation

This section examines numerically the valence conservation for central atoms. In order to make the molecular-orbital analyses as reliable as possible, the systems with 'charge per atom' of less than 0.25 (for BF_{4}^{-}, it is $1 / 5=0.2 ; 0.25$ is a tentative border line) were chosen under the assumption that the hypothetical polyhedra used in this section can model the real polyhedra found in inorganic crystals. The selected systems are listed in Table 3 with an indication of which are observed in nature. $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$ (Fig. 2) consists of two types of $\mathrm{Al}(\mathrm{OH})_{6}$ octahedra and the results for No. 14 in Table 3 are the average over the two $\mathrm{Al}(\mathrm{OH})_{6}$ octahedra. The results of No. 12 (Fig. 3) are for the central Al in Fig. 3. The quantities σ_{R} and σ_{θ} in Table 3 are measures of the degree of distortion for a polyhedron and are defined as

$$
\begin{equation*}
\sigma_{R}=\left[\sum_{i}\left(R_{i}-R_{\mathrm{av}}\right)^{2} / N_{R}\right]^{1 / 2}(\text { in } \AA) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\theta}=\left[\sum_{j}\left(\theta_{j}-\theta_{\mathrm{av}}\right)^{2} / N_{\theta}\right]^{1 / 2}(\text { in degrees }) \tag{36}
\end{equation*}
$$

where $R_{i}, R_{\text {av }}$ and N_{R} are the bond distance, the arithmetic average of bond distances and the number of bond distances in a polyhedron, respectively. Similarly, $\theta_{i}, \theta_{\text {av }}$ and N_{θ} are the corresponding parameters for bond angles. Figs. 4-6 show examples of the distorted polyhedra listed in Table 3. In Table 3 the average bond distances (R_{av}) for Nos. 9-22 are in agreement with those found in actual crystals to within 2% (see Table 1 in Part I). For example, the average $\mathrm{Al}-\mathrm{O}$ distance in $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$ (No. 14) of $1.881 \AA$ deviates from the observed values (1.91 and $1.92 \AA$) from X-ray analysis (Dent Glasser \& Giovanoli, 1972b). This level of deviation is

Table 3
Examination of the valence conservation for polyhedra $M X_{v}$ with ab initio optimized geometries.
R_{av} denotes averaged $M-X$ distances in \AA.

No.	$M X_{v}$	System	$R_{\text {av }}$	σ_{R}	$\theta_{\text {av }}$	σ_{θ}	q_{M}	$Q_{M M}^{0}$	V_{M}^{b}	V_{M}
(1)	CC_{2}	$\mathrm{H}_{3} \mathrm{CCCH}$	1.325	0.135	180.00	0.00	3.963	0.983	3.985	3.992
(2)	CC_{2}	HCCCCH	1.292	0.117	180.00	0.00	3.983	0.992	3.996	3.999
(3)	CC_{3}	$\mathrm{C}_{10} \mathrm{H}_{8}$	1.424	0.011	120.00	1.48	3.965	0.987	3.787	3.982
(4)	CC_{3}	$(\mathrm{CH})_{4} \mathrm{CCH}_{2}$	1.436	0.083	120.00	11.03	3.927	0.969	3.918	3.977
(5)	CC_{4}	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$	1.550	0.000	109.47	0.00	3.814	0.916	3.948	3.963
(6)	CC_{4}	$\mathrm{HC}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]_{3}$	1.578	0.024	109.32	4.49	3.836	0.930	3.899	3.952
(7)	BeO_{4}	$\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}$	1.634	0.000	109.49	2.23	1.161	0.085	1.965	1.982
(8)	BeO_{4}	$\mathrm{Be}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})\right]_{2}$	1.611	0.134	108.44	12.49	1.168	0.087	1.951	1.982
(9)	BO_{4}	$\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$	1.472	0.000	109.50	2.74	1.952	0.240	2.925	2.944
(10)	BO_{3}	$\mathrm{B}(\mathrm{OH})_{3}$ coplanar	1.365	0.000	120.00	0.00	2.021	0.256	2.996	3.018
(11)	AlO_{6}	$\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$	1.920	0.000	90.00	0.93	1.966	0.154	3.272	3.316
(12)	AlO_{4}	$\left[\mathrm{Al}_{5} \mathrm{O}_{4}(\mathrm{OH})_{12}\right]^{5-}$	1.725	0.046	109.31	5.60	2.009	0.151	3.293	3.414
(13)	AlO_{4}	$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$	1.725	0.000	109.52	4.12	2.076	0.167	3.400	3.479
(14)	AlO_{6}	$\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$	1.881	0.074	89.62	7.72	1.958	0.149	3.219	3.325
(15)	AlO_{6}	trans $-\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$	1.884	0.095	89.38	10.79	1.990	0.155	3.280	3.360
(16)	AlO_{6}	cis- $\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$	1.880	0.078	90.00	11.18	1.956	0.153	3.230	3.318
(17)	AlO_{4}	$\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	1.730	0.104	108.22	11.32	1.969	0.153	3.264	3.327
(18)	SiO_{6}	$\left[\mathrm{Si}(\mathrm{OH})_{6}\right]^{2-}$	1.786	0.000	90.00	1.12	2.726	0.289	4.240	4.296
(19)	SiO_{4}	$\left[\mathrm{SiO}(\mathrm{OH})_{3}\right]^{-}$	1.639	0.088	109.12	6.88	2.961	0.332	4.544	4.596
(20)	SiO_{4}	$\mathrm{Si}(\mathrm{OH})_{4}$	1.615	0.000	109.54	4.44	2.833	0.303	4.375	4.455
(21)	SiO_{6}	trans - $\mathrm{Si}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	1.779	0.125	89.92	1.79	2.779	0.294	4.319	4.381
(22)	SiO_{6}	cis-Si(OH) $4_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	1.787	0.142	89.42	9.10	2.797	0.300	4.329	4.393

The names of (1)-(6) are as follows: propyne, butadiyne (diacetylene), naphthalene, fulvene, neopentane, tri-tertbutylmethane. The actual systems in the table are as follows: $\mathrm{B}(\mathrm{OH})_{3}$: orthoboric acid (Zachariasen, 1954); $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$: $\mathrm{Ba}\left[\mathrm{B}(\mathrm{OH})_{4}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Kutschabsky, 1969); $\left[\mathrm{Al}_{5} \mathrm{O}_{4}(\mathrm{OH})_{12}\right]^{5-}$: this is a model for the $\left[\mathrm{AlO}(\mathrm{OH})_{2}\right]^{-}$chain in γ - $\mathrm{Ba}\left[\mathrm{AlO}(\mathrm{OH})_{2}\right]_{2}$ (Dent Glasser \& Giovanoli, 1972a); $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}: \alpha-\mathrm{Ba}_{2}\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]$ (Dent Glasser \& Giovanoli, 1972b); $\left[\mathrm{Si}(\mathrm{OH})_{6}\right]^{2-}$: $\left[\mathrm{Ca}_{3} \mathrm{Si}(\mathrm{OH})_{6} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{SO}_{4}\right)\left(\mathrm{CO}_{3}\right)$ (Edge \& Taylor, 1971). The terms cis and trans for the octahedral complex $X_{4} Y_{2}$ refer to ligand Y.
BF_{3} are $2.893(\mathrm{~B}-\mathrm{F}=1.313 \AA$, observed), $2.880(\mathrm{~B}-\mathrm{F}=1.339 \AA, 2 \%$ longer) and $2.861(\mathrm{~B}-\mathrm{F}=1.287 \AA$, 2% shorter), showing the insensitivity of the valence to bond distance which is a result of using molecular orbitals without allowing for CI. In other words, in so far as near equilibrium structures are used for valence calculations by non-CI molecular-orbital methods, highly accurate agreements between calculated bond distances and observed ones are not always necessary (see also §5.3).

We can see from $\theta_{\text {av }}$ and σ_{θ} in Table 3 that the Al valences (V_{Al}^{b} and V_{Al}) are virtually constant across systems $11-17$, in spite of a large variation in the degree of angular distortion for $\sigma_{\theta} / \theta_{\mathrm{av}}$ \{the largest is 12.4% for cis$\operatorname{Al}\left[(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$(No. 16) $\}$. The same tendency appears in the other systems. From Table 3 we can also see very little (or no) distance distortion $\left(\sigma_{R}\right)$ dependence of V_{M}^{b} and V_{M} (Nos. 7 and 8 for BeO_{4}; Nos. 12, 13 and 17 for AlO_{4}; Nos. 11, 14 and 15 for AlO_{6}; Nos. 18, 21 and 22 for SiO_{6}). Thus, we can conclude that the valences defined by (9) and (11) for the central atoms of polyhedra are approximately
significant in terms of the standard uncertainties from the Xray analysis, but not for the calculation of the valence, which gives bond distances that are at best reliable only to within 2%. For example, the calculated valences of the B atoms in

Figure 2
Calculated structure of $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$ (Dent Glasser \& Giovanoli, 1972a, $b)$. This structure has C_{i} symmetry.
conserved under polyhedron distortion.
From Table 3 we can also confirm that valence is conserved when the coordination number changes. For example, the valences (V_{M}^{b} and V_{M}) of the six-coordinate Al and the fourcoordinate Al fall within a narrow range of $3.23-3.40$. The same feature appears in the $\mathrm{B}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{O}$ systems. The atomic population $\left(q_{M}\right)$ and the ionic term $Q_{M M}^{0}$ are also nearly conserved under polyhedral distortion and changes in coordination number.

5.2. Examination of the equal-population principle

Table 4 shows the s - and p-orbital populations of $M(\mathrm{Be}, \mathrm{B}$, Al, Si) in the selected systems in Table 3. Three organic

Figure 3
The calculated structure of $\left[\mathrm{Al}_{5} \mathrm{O}_{4}(\mathrm{OH})_{12}\right]^{5-}(\mathrm{No}$.12 in Table 3). This is a model for $\left[\mathrm{AlO}(\mathrm{OH})_{2}\right]^{-}$chains in $\gamma-\mathrm{Ba}\left[\mathrm{AlO}(\mathrm{OH})_{2}\right]_{2}$ (Dent Glasser \& Giovanoli, 1972b).
molecules are listed as typical examples of where near equalpopulation states are achieved. Table 5 shows the $3 d$ orbital populations of Al and Si : the populations per orbital are much smaller than those of the $3 s$ and $3 p$ orbitals. This means that the $3 d$-orbital contribution to $\mathrm{Al}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{O}$ bonds is small, although its contribution to geometry optimization is known to be important (for example, see Tossel, 1987). Hence, it may be permissible to exclude the $3 d$ orbitals of Al and Si from examination on the equal-population principle.

Considering Table 4 again, for the systems other than the organic compounds, in principle the p-orbital populations of the central atoms depend on the choice of the directions of the Cartesian coordinate axes since these polyhedra are distorted. However, given the condition that each ligand atom provides one lone pair of electrons to the central atom (i.e. there is no ligand atom that bonds especially strongly to the central atom), if the population state of $q_{s} \geq q_{p x} \simeq q_{p y} \simeq q_{p z}\left(q_{p x}\right.$, for example, is the orbital population of p_{x}) appears in a coordinate system, such a population state should appear in any coordinate system. From Table 4 we can see that the near equal-population state is achieved and cis- $\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$ (No. 16) is taken as an example. Although this AlO_{6} octahedron is markedly distorted $\left(\sigma_{\theta} / \theta_{\mathrm{av}}=12.4 \%\right)$, the orbital populations of the $3 p$ orbitals of the Al are not far from each other and the population deviation $\left(100 \delta^{2} q\right)$ is equal to that of $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ (No. 11), which has the smallest angular distortion $\left(\sigma_{\theta}=0.93^{\circ}, \sigma_{\theta} / \theta_{\mathrm{av}}=1.0 \%\right)$ among the $\mathrm{Al}-\mathrm{O}$ systems. This same feature therefore appears in systems besides organic molecules.

An interesting feature is found in $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}(\mathrm{OH})_{4}^{-}$. If the conventional valence-bond view is applied to $\mathrm{B}(\mathrm{OH})_{3}$, the electron population of the B atom should be $\left(s p^{2}\right)^{1}$ $\left(s p^{2}\right)^{1}\left(s p^{2}\right)^{1}\left(2 p_{\pi}\right)^{0}$ [this is identical to $\left.(2 s)^{1}\left(2 p_{x}\right)^{1}\left(2 p_{y}\right)^{1}\left(2 p_{z}\right)^{0}\right]$. However, the $2 p_{\pi}$ orbital ($2 p_{z}$ in this case) has an electron

Figure 4
$\mathrm{Be}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (No. 8 in Table 3). The bisector of $\mathrm{O} 2-\mathrm{Be} 1-\mathrm{O} 3$ is coincident with the C_{2} axis. The $\mathrm{O}-\mathrm{Be}-\mathrm{O}$ angles lie between 95.88 and 134.32°. Bond distances are given in \AA.
population of 0.473 , matching those of the $2 p_{x}$ and the $2 p_{y}$ orbitals and consequently the near equal-population state is achieved. This situation is almost the same as in $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$ (No. 9). Thus, the net charges and the valences of the trigonal B atom and the tetrahedral B atom in $\mathrm{B}-\mathrm{O}$ systems are close to each other (see Table 3). This conclusion explains why the bond-valence sum rule is applicable to both trigonal and tetragonal B atoms.

5.3. Bond distance dependence of Okada bond order

As mentioned in $\S 5.1$, the calculated valence is insensitive to bond distance in a near equilibrium structure. This does not

Figure 5
Calculated structure of trans- $\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}(\mathrm{No}$.15 in Table 3). The bond distance $\mathrm{Al} 1-\mathrm{O} 7$ is $1.759 \AA$. The angle $\mathrm{O} 2-\mathrm{Al} 1-\mathrm{O} 3$ is 69.9° and $\mathrm{O} 4-\mathrm{All}-\mathrm{O} 569.3^{\circ}$. Other $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ angles lie between 82.1 and 103.5°. Bond distances are given in \AA.

Figure 6
cis- $\mathrm{Si}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{No}$.22 in Table 3). The bisector of $\mathrm{O} 4-\mathrm{Si1}-\mathrm{O} 6$ is coincident with the C_{2} axis. $\mathrm{Si} 1-\mathrm{O} 41.988, \mathrm{Si1}-\mathrm{O} 51.694 \AA$. The $\mathrm{O}-\mathrm{Si}-$ O angles lie between 76.7 and 107.0°. Bond distances are given in \AA.

Table 4
Examination of the 'equal-population principle '.
The numbering is the same as that in Table 3. The descriptions for coordinate axes given here are incomplete, but are not necessary (see text).

No.	$M X_{v}$	σ_{θ}	q_{s}	$q_{p x}$	$q_{p y}$	$q_{p z}$	$100 \delta^{2} q$	Coordinate		
(1)	CC_{2}	0.00	1.071	0.938	0.984	0.970	0.97	$x \\| \mathrm{C}-\mathrm{C}$ axis		
(3)	CC_{3}	1.48	1.101	0.936	0.950	0.979	1.70	$x \\| \mathrm{C}-\mathrm{C}$ axis		
(5)	CC_{4}	0.00	1.098	1.012	1.023	1.026	0.46	$y \\| \mathrm{C}-\mathrm{C}$ axis		
(8)	BeO_{4}	12.49	0.313	0.253	0.270	0.324	0.34	$z \\| \mathrm{Be}-\mathrm{O}$ axis		
(7)	BeO_{4}	2.23	0.336	0.261	0.281	0.282	0.31	$z \\| \mathrm{Be}-\mathrm{O}$ axis		
(10)	BO_{3}	0.00	0.544	0.502	0.502	0.473	0.26	$z \perp \mathrm{BO}$ plane		
(9)	BO_{4}	2.74	0.556	0.455	0.482	0.457	0.67	$z \\| \mathrm{B}-\mathrm{O}$ axis		
(13)	AlO_{4}	4.12	0.548	0.322	0.296	0.301	4.42	$x \\| \mathrm{Al}-\mathrm{O}$ axis		
(17)	AlO_{4}	11.32	0.522	0.304	0.297	0.274	4.03	$z \\| \mathrm{Al}-\mathrm{O}$ axis		
(11)	AlO_{6}	0.93	0.533	0.293	0.293	0.287	4.40	x, y, z nearly $\\| \mathrm{Al}-\mathrm{O}$ axes		
(16)	AlO_{6}	11.18	0.533	0.281	0.316	0.283	4.40	$z \\| \mathrm{Al}-\mathrm{O}, y$ nearly $\\| \mathrm{Al}-\mathrm{O}$		
(20)	SiO_{4}	4.44	0.711	0.444	0.425	0.428	5.85	$z \\| \mathrm{Si}-\mathrm{O}$ axis		
(19)	SiO_{4}	6.88	0.740	0.431	0.447	0.454	6.24	$z \\| \mathrm{Si}-\mathrm{O}$ axis		
(18)	SiO_{6}	1.12	0.716	0.413	0.410	0.418	6.65	x, y, z nearly $\\| \mathrm{Si}-\mathrm{O}$ axes		
(22)	SiO_{6}	9.10	0.719	0.433	0.425	0.409	6.63	$z \\| \mathrm{Si}-\mathrm{O}$ axis		

Table 5
$3 d$-Orbital populations on the Al and the Si atoms of the systems in Table 3.

No.	System	$q_{3 d x y}$	$q_{3 d y z}$	$q_{3 d z x}$	$q_{3 d z^{2}-r^{2}}$	$q_{3 d x^{2}-y^{2}}$
(11)	$\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$	0.094	0.092	0.092	0.134	0.135
(16)	$c i s-\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$	0.064	0.136	0.092	0.141	0.117
(13)	$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$	0.152	0.097	0.151	0.116	0.092
(17)	$\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.099	0.090	0.120	0.153	0.103
(18)	$\left[\mathrm{Si}(\mathrm{OH})_{6}\right]^{2-}$	0.126	0.125	0.126	0.200	0.188
(20)	$\mathrm{Si}(\mathrm{OH})_{4}$	0.177	0.178	0.155	0.158	0.157

mean that the relationship between Okada bond order and bond distance does not correspond to the empirical relationship between the bond valence and bond distance, because empirical relationships such as the Brown-Altermatt relation (Brown \& Altermatt, 1985) are valid only for observed structures in their equilibrium state. In other words, it is meaningless to examine the relationship between Okada bond order and $\mathrm{Al}-\mathrm{O}$ distance in $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$, for example, by varying the $\mathrm{Al}-\mathrm{O}$ distance. Hence, in order to compare the relationship between Okada bond order and bond distance with the empirical relation, we must use distorted equilibrium systems where the bond distance values are distributed over a wide range or equilibrium systems with different coordination numbers. Here, $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ (Fig. 7) which occurs in borax (Morimoto, 1956), $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$ (No. 14 in Table 3) and hypothetical $\mathrm{Al}(\mathrm{OH})_{3}$ are chosen.

Table 6 lists the bond distances for $M-\mathrm{O}(M=\mathrm{B}, \mathrm{Al})$, Okada bond orders, $D_{M O}$, and the bond valence from the Brown-Altermatt formula, $s_{M O}$ (BA). Fig. 8 shows the relationship between the calculated bond distances and $D_{M O}, s_{M O}$ (BA). We can see that the $D_{M O}$ versus $R_{M O}$ relation is very close to the $s_{M O}$ (BA) versus $R_{M O}$ relation (dashed lines).

Next, we note the fact that there are some abnormal relationships between bond distance and bond order. Cyclobutane, $\left(\mathrm{CH}_{2}\right)_{4}$, cyclopropane, $\left(\mathrm{CH}_{2}\right)_{3}$, and spiropentane, $\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}$ (Fig. 9), are known as strained compounds and they have $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles that deviate strikingly from normal
values such as $109.5,120$ or 180°. Spiropentane, for example, has a very large angular distortion ($\sigma_{\theta}=37.57^{\circ}$, $\left.\sigma_{\theta} / \theta_{\mathrm{av}}=31.8 \%\right)$. By comparison, neopentane, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$, toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, biphenyl, $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}$, and butadiene, $\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$, are taken as compounds having approximately normal $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles. Table 7 shows the $\mathrm{C}-\mathrm{C}$ distances $\left(R_{\mathrm{CC}}\right)$ and the Okada bond orders (D_{CC}) in these hydrocarbons. All the $\mathrm{C}-\mathrm{C}$ bonds concerned here are those which are drawn as single bond lines. From this table we can see that the $R_{\text {CC }}$ versus $D_{\text {CC }}$ relation in the 'abnormal' compounds is unusual, while the $R_{C C}$ versus D_{CC} relation in the 'normal' compound is normal (i.e. as R_{CC} increases, $D_{\text {CC }}$ decreases). Newton (1977) reported that the high-density region of the difference electron density distribution for a $\mathrm{C}-\mathrm{C}$ bond in cyclopropane is shifted outward from the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ triangle and a 'bent bond' is present. This means that the 'effective bond distance' is longer than the $\mathrm{C}-\mathrm{C}$ internuclear distance. Thus, the presence of high strain may be a cause of the unusual R_{CC} versus D_{CC} relation.

Table 8 shows another type of abnormal relationship. For example, the $\mathrm{C}-\mathrm{C}$ bond orders of (1)-(3) are shorter than the distance in ethane (6), in spite of the fact that the $\mathrm{C}-\mathrm{C}$ distances of (1)-(3) are significantly shorter than that of ethane. If we consider only (1), (2) and (6), the following explanation may be possible. In $\mathrm{CF}_{3} \mathrm{CH}_{3}$ (1), for example, the covalency of the $\mathrm{C}-\mathrm{C}$ bond has decreased, but the attractive

Figure 7
Calculated structure of $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ in borax (Morimoto, 1956). The angles $\mathrm{O} 2-\mathrm{B} 2-\mathrm{O}$ are $116.4,116.7$ and 126.9°. The angles $\mathrm{O}-\mathrm{B} 1-\mathrm{O}$ lie between 106.3 and 111.2°. Bond distances are given in \AA.

Table 6
Examination of the bond-distance dependence of the Okada bond order.
'HF' means $a b$ initio HF/STO-3G optimization.

$\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ is present in borax, $\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Morimoto, 1956).
electrostatic interaction is generated from the net charges with opposite sign. Hence, the 'short distance-small bond order' in (1) seems to be ascribed to the difference in the electrostatic

Figure 8
The bond distance dependence of $D_{M O}(M=\mathrm{B}, \mathrm{Al})$ for $\left[\mathrm{B}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ (left curve) and $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$ (right curve). The added datapoint for $\mathrm{Al}(\mathrm{OH})_{3}$ is indicated. The black circles denote $D_{M O}$.
interaction. However, this explanation is not applicable to the combination of (3) and (6), nor does it explain the relationships between (4), (5) and (6). Presumably, in order to understand the abnormal relationship shown in Table 8, the influence of atoms other than the bonded atoms of interest should be taken into account. With respect to the application of the bond-valence sum rule to the determination of the 'effective oxidation numbers' in oxide superconductors, Jansen et al. (1992) proposed that 'cation-anion distances cannot be described in terms of valences (oxidation states, net charges) alone. Such distances depend sensitively on the changes in the environment.... This opinion is essentially correct.

5.4. d-Orbital contribution to valence

Table 9 shows the effect of the $3 d$ orbitals of $M\left(M=\mathrm{Al}^{3+}\right.$ to Cl^{7+} and $\mathrm{Fe}^{2+}, \mathrm{Fe}^{0}, \mathrm{Co}^{3+}$ and Ni^{0}) on V_{M}^{b} values as calculated using DVSCAT. Table 9 and Fig. 10 show the comparison between V_{M}^{b} values $\left(M=\mathrm{Al}^{3+}\right.$ to $\left.\mathrm{Cl}^{7+}\right)$ 'with $3 d$ orbitals' and those 'without $3 d$ orbitals'. V_{M}^{b} 'with $3 d$ orbitals' exhibit approximately linear correlation with the oxidation numbers and approximate continuity for the V_{M}^{b} of Be, B and C , while V_{M}^{b} 'without $3 d$ orbitals' do not. This suggests that the $3 d$ orbital contribution is necessary to the bond-valence sum rule for Al^{3+} to Cl^{7+} compounds. Thus, as shown in Table 4, although the $3 d$ orbitals of Al^{3+} to Cl^{7+} compounds do not have a dominant role in $M-\mathrm{O}$ bond formation, they significantly affect the valence values of the atoms in the compounds. Mayer (1987) reached the same conclusion for hypervalent sulfur using ab intio HF methods.

Among the transition metal complexes in Table 9, the valences of Fe and Co in (9)-(11) and (13) are much larger

Figure 9
HF/STO-3G structure of spiropentane. There are 'abnormal' $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles: $\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 259.36, \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 361.28, \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4137.75^{\circ}$. The averaged $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle, θ_{av}, around C 1 is 112.26°. The angular distortion $\sigma_{\theta} / \theta_{\text {av }}$ around C 1 is $37.57 / 112.26^{\circ} \times 100=31.8 \%$.

Table 7
The relationship between the $\mathrm{C}-\mathrm{C}$ distances and the Okada bond orders in the 'abnormal' and the 'normal' hydrocarbons.
θ, R and D represent bond angle, bond distance and Okada bond order, respectively.

'Abnormal'				'Normal'			
	$\theta_{\mathrm{CCC}}\left({ }^{\circ}\right)$	$R_{\text {CC }}\left(\right.$ (${ }^{\text {a }}$	$D_{\text {CC }}$		$\theta_{\mathrm{CCC}}\left({ }^{\circ}\right)$	$R_{\text {CC }}(\AA)$	$D_{\text {CC }}$
$\left(\mathrm{CH}_{2}\right)_{4}$	89.9	1.553	0.988	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$	109.5	1.550	0.987
$\left(\mathrm{CH}_{2}\right)_{3}$	60.0	1.503	0.981	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	120.7	1.527	1.012
$\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4}$	\dagger	1.513	0.980	Biphenyl	120.8	1.508	1.026
		1.486	0.980	Butadiene	124.0	1.489	1.081

\dagger See Fig. 9.
Table 8
Abnormal relationship between the bond order and $\mathrm{C}-\mathrm{C}$ distances in halogenoethanes with observed structures (The Chemical Society of Japan, 1984).
D and c are Okada bond order and net charge, respectively.

No.		A	B	$R_{A B}(\AA)$	$D_{A B}$	c_{A}	c_{B}
(1)	$\mathrm{CF}_{3} \mathrm{CH}_{3}$	C_{F}	C_{H}	1.494	0.990	0.970	-0.422
(2)	$\mathrm{CH}_{3} \mathrm{CHF}_{2}$	C_{H}	C_{FH}	1.498	1.000	0.650	-0.368
(3)	$\mathrm{CH}_{2} \mathrm{FCH}_{2} \mathrm{~F}$	C_{FH}	C_{FH}	1.503	0.985	0.203	0.203
(4)	$\mathrm{CCl}_{3} \mathrm{CH}_{3}$	C_{C}	C_{H}	1.541	0.951	0.470	-0.262
(5)	$\mathrm{CF}_{3} \mathrm{CCl}_{3}$	C_{F}	C_{Cl}	1.54	0.857	0.887	0.282
(6)	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	C_{H}	C_{H}	1.535	1.035	-0.148	-0.148

Table 9
Examination of $3 d$-orbital contribution to V_{M}^{b} with values for Be, B and C given for comparison.

No.	System	M	Without $3 d$	V_{M}^{b} with 3d-orbital population for 'with $3 d$
(1)	$\mathrm{Be}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	Be^{2+}	1.951	
(2)	$\mathrm{B}(\mathrm{OH})_{3}$	$\mathrm{~B}^{3+}$	2.996	
(3)	CO	C_{2}	3.849	
(4)	$\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	Al^{3+}	2.332	3.264
(5)	$\mathrm{Si}(\mathrm{OH})_{4}$	Si^{4+}	3.033	4.375
(6)	$\mathrm{PO}(\mathrm{OH})_{3}$	P^{5+}	3.644	5.464
(7)	$\mathrm{SO}_{2}(\mathrm{OH})_{2}$	$\mathrm{~S}^{6+}$	3.893	6.256
(8)	$\mathrm{ClO}_{3}(\mathrm{OH})$	Cl^{7+}	3.770	6.579
(9)	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	Fe^{2+}		6.086
(10)	$\left[\mathrm{Fe}(\mathrm{Py})_{6}\right]^{2+}$	Fe^{2+}		3.812
(11)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	Fe^{2+}		1.955
(12)	$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	Co^{3+}		5.654
(13)	$\left.\left[\mathrm{Co}(\mathrm{NH})_{3}\right)_{6}\right]^{3+}$	Co^{3+}		3.751
(14)	$\mathrm{Fe}(\mathrm{CO})_{5}\left(D_{3 h}\right)$	Fe^{0}		6.195
(15)	$\mathrm{Ni}(\mathrm{CO})_{4}\left(T_{d}\right)$	Ni^{0}		4.620

Structural data are as follows: (3), (9), (12), (13), (14) and (15) are from Kagaku-Binran (The Chemical Society of Japan, 1984). (3): observed structure with $\mathrm{C}=\mathrm{O} 1.16 \AA$. (6) HF/STO-3G* structure with $\mathrm{P}-\mathrm{O}_{H} 1.595, \mathrm{P}=\mathrm{O} 1.427 \AA$. (7) $\mathrm{HF} / 3-21 \mathrm{G}^{*}$ structure with $\mathrm{S}-\mathrm{O}_{H} 1.561, \mathrm{~S}=\mathrm{O} 1.414 \AA$. (8) $\mathrm{HF} / 3-21 \mathrm{G}^{*}$ structure with $\mathrm{Cl}-\mathrm{O}_{H} 1.591, \mathrm{Cl}=\mathrm{O} 1.419 \AA$ (av.). (9) observed structure with $\mathrm{Fe}-\mathrm{C} 1.92, \mathrm{C}-\mathrm{N} 1.14$ A. (10) Pyridine (py) structure was determined with HF/STO-3G. The six pyridines were octahedrally arranged around Fe with $\mathrm{Fe}-\mathrm{N} 2.036 \AA$ (low spin). This distance is from See et al. (1998). (11) $\mathrm{Fe}-\mathrm{O}$ $2.17 \AA$, estimated with the Brown-Altermatt (1985) relation. The $\mathrm{H}_{2} \mathrm{O}$ structure used here is the observed one. (12) observed structure with Co-C $1.894 \AA$. (13) observed structure with $\mathrm{Co}-\mathrm{N} 1.970 \AA$. (14) observed structure with $\mathrm{Fe}-\mathrm{C} 1.829(\times 3), 1.809$ $(\times 2), \mathrm{C}-\mathrm{O} 1.153 \AA$. (15) observed structure $\left(T_{d}\right)$ with $\mathrm{Ni}-\mathrm{C} 1.84, \mathrm{C}-\mathrm{O} 1.13 \mathrm{~A}$.
than the oxidation numbers because of the large contribution of $3 d$ orbitals. For example, the $3 d$ orbital population state of Fe in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is $\left(3 d_{x y}\right)^{1.643}\left(3 d_{y z}\right)^{1.643}\left(3 d_{z x}\right)^{1.643}$ $\left(3 d_{x^{2}-y^{2}}\right)^{0.786}\left(3 d_{z^{2}}\right)^{0.786}$, where the population of each $3 d_{\pi}$ orbital, 1.643 , is significantly smaller than 2.000 . This comes
from the presence of strong $3 d_{\pi}(\mathrm{Fe})-$ $\pi^{*}(\mathrm{CN})$ interactions. The conventional form of the bond-valence sum rule, which is formulated in terms of oxidation number, is not applicable to such atoms because the proportionality $V_{A}^{b} \propto Z_{A}$ is not achieved. As mentioned in §3.4, See et al. (1998) discussed the 'specific ligand effects' for the bond-valence sums of some first-row transition metal complexes. We can say that this effect is clearly shown in the V_{M}^{b} of the Fe^{2+} and Co^{3+} complexes, if we regard the bond valence as the Okada bond order itself (see §5.6).

5.5. Bond-valence sums of electronegative atoms

5.5.1. Reference systems. The reference systems used hereafter are given in Table 10. To show that the selection of the reference systems is not uniquely determined, two candidate reference systems for $\mathrm{Al}-\mathrm{Cl}$ are listed in Table 10. Since V_{Al}^{b} are not exactly constant, the values of $s_{\text {calc }}$ for $\mathrm{Al}-\mathrm{Cl}$ systems depend on the choice of reference system. The TeCl_{4} molecule should be an appropriate reference system for $\mathrm{Te}^{4+}-\mathrm{Cl}^{-}$, but this monomeric molecule is unknown and $a b$ initio HF calculations to determine the molecular structure of TeCl_{4} gave unreasonable results. Hence, $\left[\mathrm{TeCl}_{6}\right]^{2-}$ in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{TeCl}_{6}$ (Hazell, 1966) was chosen as the reference system for $\mathrm{Te}-\mathrm{Cl}$.
5.5.2. $\mathbf{C l}$ atoms in $\mathrm{Al}_{2} \mathbf{C l}_{\mathbf{6}}$ and $\mathrm{Te}_{\mathbf{4}} \mathrm{Cl}_{\mathbf{1 6}}$ molecules. This section examines the bond-valence sums of Cl atoms in $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ and $\mathrm{Te}_{4} \mathrm{Cl}_{16}$ (Buss \& Krebs, 1971; Fig. 11), which are electroneutral molecules (they give reliable results from molecularorbital calculations) but contain Cl atoms that form more

Figure 10
The contribution of $3 d$ orbitals to the valences of Al^{3+} to Cl^{7+} for the compounds listed in Table 9, with values for Be, B and C for comparison.

Table 10
The reference systems $R_{M X}^{0}$ and $\lambda_{M X}$ are parameters used for the 'cubic relation' proposed in Part I.

No.	$M-X$	Reference system	Geometry	$R_{\mathrm{av}}(\AA)$	V_{M}^{b}	$D_{M X}($ ref $)$	$R_{M X}^{0}$	$\lambda_{M X}(\AA)$	s_{0}
(1)	$\mathrm{H}-\mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$	Obs.	0.96	0.870	0.870	0.96	0.09	1.000
(2)	$\mathrm{Be}-\mathrm{O}$	BeO_{4} systems \dagger	HF/STO-3G	1.61	1.958	0.490	1.63	0.40	0.250
(3)	$\mathrm{Al}-\mathrm{O}$	AlO_{6} systems \dagger	HF/STO-3G*	1.88	3.250	0.542	1.91	0.59	0.500
(4)	$\mathrm{Al}-\mathrm{Cl}$	AlCl_{3}	Obs.	2.063	3.603	1.201	2.06	0.76	0.750
(5)		$\mathrm{AlCl}_{4}{ }^{-}$	Obs.	2.13	3.767	0.942	2.13	0.76	0.750
(6)	$\mathrm{Si}-\mathrm{O}$	SiO_{4} systems \dagger	HF/STO-3G*	1.615	4.361	1.090	1.63	0.50	1.000
(7)	$\mathrm{Te}-\mathrm{Cl}$	$\mathrm{TeCl}_{6}{ }^{2-}$	Obs.	2.53	4.536	0.756	2.53	0.96	0.667

Geometry: Source of the observed structural data. $\mathrm{H}_{2} \mathrm{O}$: Kagaku Binran, 3rd ed. (The Chemical Society of Japan, 1984). AlCl_{3} : Aarset et al. (1999); AlCl_{4}^{-}: Table 1 in Part I. $\left[\mathrm{TeCl}_{6}\right]^{2-}$: Hazell (1966). \dagger The $M-\mathrm{O}$ systems ($M=\mathrm{Be}, \mathrm{Al}, \mathrm{Si}$) are in Table 3.

Table 11
Examination of the bond-valence sum rule for Cl atoms in $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ and $\mathrm{Te}_{4} \mathrm{Cl}_{16}$ which contain bridge-bonded Cl atoms.

Molecules	$X-M$	$R_{X M}(\AA)$	$D_{X M}$	$s_{\text {calc }}$	$s($ cubic $)$	$s(\mathrm{BA})$
$\mathrm{Al}_{2} \mathrm{Cl}_{6}$	$\mathrm{Cl}_{t}-\mathrm{Al}$	2.04	1.184	0.986	0.92	0.979
	$\mathrm{Cl}_{b}-\mathrm{Al}$	2.24	0.677	0.564	0.60	0.571
$\mathrm{Te}_{4} \mathrm{Cl}_{16}$	$\mathrm{Cl}_{t} 1-\mathrm{Te} 1$	2.315	1.146	1.011	1.03	
	$\mathrm{Cl}_{t} 2-\mathrm{Te} 1$	2.311	1.149	1.013	1.05	
	$\mathrm{Cl}_{t} 3-\mathrm{Te} 1$	2.317	1.159	1.022	1.03	
	$\mathrm{Cl}_{b} 4-\mathrm{Te} 1$	2.908	0.382	0.337	0.35	
	$\mathrm{Cl}_{b} 4-\mathrm{Te}^{\prime}$	2.944	0.359	0.317	0.33	
	$\mathrm{Cl}_{b} 4-\mathrm{Te}^{\prime}$	2.959	0.343	0.302	0.32	

Source of structural data $\mathrm{Al}_{2} \mathrm{Cl}_{6}$: Kagaku Binran, 3 rd ed. (The Chemical Society of Japan, 1984). $\mathrm{Te}_{4} \mathrm{Cl}_{16}$: Buss \& Krebs (1971).

Table 12
Valence analysis for beryl, $\mathrm{Al}_{2} \mathrm{Be}_{3}\left(\mathrm{SiO}_{3}\right)_{6}$, using the cluster model $\left[\mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{Si}_{6} \mathrm{O}_{15}(\mathrm{OH})_{22}\right]^{8-}$.
c_{A} denotes the net charge of atom A. Averaged metal-oxygen bond distances (\AA) were calculated with $a b$ initio HF/STO-3G*. The corresponding observed values for $\mathrm{Be}-\mathrm{O}, \mathrm{Al}-\mathrm{O}$ and $\mathrm{Si}-\mathrm{O}$ are 1.653, 1.904 and $1.607 \AA$, respectively.

Atom							
A	Coordination	$R_{A-\mathrm{O}}$	q_{A}	c_{A}	$Q_{A A}^{0}$	V_{A}^{b}	V_{A}
Be	BeO_{4} tetrahedral	1.601	1.116	0.884	0.079	1.831	1.919
Al	AlO_{6} octahedral	1.883	1.890	1.110	0.137	3.108	3.232
Si	SiO_{4} tetrahedral	1.617	2.773	1.227	0.287	4.242	4.397
O 1	$\mathrm{Bonding}^{2}$ to 2 Si		6.733	-0.733	2.848	1.958	2.072
O 2	Bonding to $\mathrm{Be}, \mathrm{Al}, \mathrm{Si}$		6.751	-0.751	2.863	1.934	2.050

bonds than their classical valence. Table 11 shows the results for $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ and $\mathrm{Te}_{4} \mathrm{C1}_{16}$. In this table, $s_{\text {calc }}$ is the bond valence calculated with (33), $s_{\text {cubic }}$ is given by the 'cubic formula', $s=s_{0}$ $\left(R^{0}-\lambda\right)^{3} /(R-\lambda)^{3}$ (see Part I) and $s(\mathrm{BA})$ comes from the formula of Brown \& Altermatt (1985). In $\mathrm{Te}_{4} \mathrm{Cl}_{16}, \mathrm{Te} 5 d$ orbitals are included in DVX_{α} calculations. Among $12 \mathrm{Te}-\mathrm{Cl}$ bonds in $\mathrm{Te}_{4} \mathrm{Cl}_{16}$, only the values for $\mathrm{Cl}_{t}(1), \mathrm{Cl}_{t}(2), \mathrm{Cl}_{t}(3)$ and $\mathrm{Cl}_{b}(4)(t=$ terminal, $b=$ bridged $)$ are listed in Table 11, because the results for the other Cl atoms are closely similar to these values. From Table 11, we can see that the $s_{\text {calc }}$ values are in good agreement with $s_{\text {cubic }}$ and $s(\mathrm{BA})$ s. In $\mathrm{Te}_{4} \mathrm{Cl}_{16}$ especially, $s_{\text {calc }}$ ratios of the $\mathrm{Te}-\mathrm{Cl}_{b}$ and the $\mathrm{Te}-\mathrm{Cl}_{t}$ are very close to the expected value of $1 / 3$.
5.5.3. O atoms in beryl. Beryl $\left[\mathrm{Al}_{2} \mathrm{Be}_{3}\left(\mathrm{SiO}_{3}\right)_{6}\right.$; Morosin, 1972] contains two types of O atoms, O 1 and O 2 . O1 is shared
by two SiO_{4} tetrahedra and O 2 by one BeO_{4} tetrahedron, one SiO_{4} tetrahedron and one AlO_{6} octahedron. O1 forms the same number of bonds as its classical valence, but O 2 forms more. Pauling's electrostatic valence rule (the original form of the bond-valence sum rule) holds well for both these types of O atoms; $4 / 4+4 / 4=2,2 / 4+4 /$ $4+3 / 6=2$. In order to examine the bond-valence analysis for these O atoms, a cluster model $\left[\mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{Si}_{6} \mathrm{O}_{15}(\mathrm{OH})_{22}\right]^{8-}$ (Fig. 12) was made by the following procedure.
(i) The $\left[\mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{Si}_{6} \mathrm{O}_{37}\right]^{30-}$ cluster was extracted from the beryl structure. Since the structure of the cluster is as it is in beryl, it is not the equilibrium structure of an isolated cluster. In such a cluster, atomic valences should not take the values realised in its 'mother crystal'. Hence, the following steps were performed.
(ii) 22 protons were attached to terminal O atoms and O atoms shared by the AlO_{6} octahedron and BeO_{4} tetrahedron in order to reduce the negative charge. ${ }^{6}$

Through this process, the O atoms are categorized into four types:
(a) O shared by two SiO_{4};
(b) O shared by one BeO_{4}, one SiO_{4} and one AlO_{6};
(c) OH bonding to $M(M=\mathrm{Si}, \mathrm{Be}, \mathrm{Al})$;
(d) O shared by one AlO_{6} and one SiO_{4}.

The O atoms of interest are (a) and (b).
(iii) Geometry optimization for the $\left[\mathrm{Be}_{4} \mathrm{Al}_{4}\right.$ $\left.\mathrm{Si}_{6} \mathrm{O}_{15}(\mathrm{OH})_{22}\right]^{8-}$ cluster was carried out using HF/STO-3G*. Through this process, the structural parameters (bond lengths, bond angles) change from their original ones, but it is predicted from $\S 5.1$ that the valences of $\mathrm{Be}, \mathrm{Al}, \mathrm{Si}$ and the O atoms of (a) and (b) should approach those in beryl.
(iv) $\mathrm{DVX}_{\alpha}-\mathrm{MO}$ calculations and Lewis-pair population analysis were performed for the proton-attached clusters with their optimized geometry.

Table 12 shows the result of the Lewis-pair population analysis. We can see that the valence ratio $V_{\mathrm{Be}}^{b}: V_{\mathrm{Al}}^{b}: V_{\mathrm{Si}}^{b}: \mathrm{V}_{O}^{b}$ is not far from the ratio of the classical valences (2:3:4:2). Next, considering O 1 and O 2 in Table 13, O 1 bonds to two atoms, while O 2 bonds to three (i.e. more than the classical valence of oxygen), but both O atoms have approximately the same valences. The sums of $s_{\text {calc }}$ of both O atoms (ca 1.8) are approximately 2 , which is the ideal value for an O atom. However, there are significant discrepancies between $s_{\text {calc }}$ and $s(\mathrm{BA})$, due to the 'abnormal relationship' discussed in §5.3. For example, the Okada bond order of 1.043 for $\mathrm{O} 1-\mathrm{Si}$ is smaller than that of $1.094(4.375 / 4)$ for $\mathrm{Si}(\mathrm{OH})_{4}$ in Table 3, despite the fact that the $\mathrm{Si}-\mathrm{O} 1$ distance $(1.593 \AA)$ is shorter than the $\mathrm{Si}-$ O distance in $\mathrm{Si}(\mathrm{OH})_{4}(1.615 \AA)$.
5.5.4. Oxygen atoms bonded to four atoms. The O 6 atom in $\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]^{4-}$ (Fig. 2) bonds to three Al atoms and one H

[^4]Table 13
Bond-valence analysis for O atoms in beryl, $\mathrm{Al}_{2} \mathrm{Be}_{3}\left(\mathrm{SiO}_{3}\right)_{6}$, using cluster model $\left[\mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{Si}_{6} \mathrm{O}_{15}(\mathrm{OH})_{22}\right]^{8-}$.
$s(B A)$: using $R_{\mathrm{O} M}(\mathrm{calc})$.

$\mathrm{O}-M$	$R_{\mathrm{O} M}(\mathrm{obs})(\AA)$	$R_{\mathrm{O} M}(\mathrm{calc})$	$D_{\mathrm{O} M}$	$s_{\text {calc }}$	$s(B A)$
$\mathrm{O} 2-\mathrm{Be}$	1.653	1.586	0.452	0.461	0.575
$\mathrm{O} 2-\mathrm{Si}$	1.620	1.616	1.094	1.018	1.022
$\mathrm{O} 2-\mathrm{Al}$	1.904	1.990	0.385	0.355	0.411
		Sum	1.931	1.835	2.008
$\mathrm{O} 1-\mathrm{Si}$	1.592	1.593	1.043	0.957	1.088
$\mathrm{O} 1-\mathrm{Si}^{\prime}$	1.594	Sum	1.928	0.915	0.839
			0.990		

atom. Since this environment is the same as that found in the crystal for $\mathrm{Ba}_{2}\left[\mathrm{Al}_{4}(\mathrm{OH})_{16}\right]$, it is considered that this O atom has essentially the same valence as in the crystal. Each Okada bond order can be found from Table 6. O6 accepts Okada bond orders of 0.880 from the H atom, and $0.341+0.395$ $+0.406=1.142$ from the three Al atoms. The bond-line valence is $V_{O}^{b}=2.022$ and the bond-valence sum is $0.5 \times$ $(1.142 / 0.543)+1.0 \times 0.880 / 0.870=2.062$ (i.e. close to 2). Thus, including the results from $\S \S 5.5 .2$ and 5.5 .3 , we can conclude that for electronegative atoms the Okada bond order exhibits nearly the same behaviour as the bond valence.

5.6. Examination of the absolute definition for bond valence

5.6.1. Comparison of experimental and theoretical valences. In order to examine the absolute definition of the bond valence, we need experimental valences against which to 'calibrate' the theoretical valences. However, and unfortunately, as far as the author is aware the only experimental results available for this purpose are those of Jellison et al. (1977) quoted in §2.3. Therefore, the considerations outlined in this section rely solely on this one experimental study. Generally speaking, experimental results act as checks on theoretical results. However, since the experimental results of Jellison et al. are based on some unavoidale assumptions, the

Figure 11
Molecular structure of $\mathrm{Te}_{4} \mathrm{Cl}_{16}$ (Buss \& Krebs, 1971).

Table 14
Atomic orbital coefficients in localized molecular orbitals for the π and lone pair orbitals of $\mathrm{O}(\mathrm{C})$.

Here, O 7 is $\mathrm{O}(\mathrm{C})$.

AO No.	AO	O7 l	O7 π
	O $4 S$	0.0072	-0.0054
16	O $4 S$	-0.0506	0.0367
17	O $4 X$	0.0050	-0.0074
18	O $4 Y$	-0.0235	0.0429
19	O $4 Z$	-0.0323	-0.0381
20	B $5 S$	0.0016	0.0113
21	B $5 S$	0.0308	-0.0247
22	B $5 X$	-0.0555	0.0437
23	B $5 Y$	-0.0850	-0.0480
24	B $5 Z$	0.0366	$\mathbf{0 . 2 0 1 2}$
25	O $7 S$	$\mathbf{0 . 1 9 0 7}$	0.0005
31	O $7 S$	$-\mathbf{0 . 7 6 3 7}$	-0.0019
32	O $7 X$	$-\mathbf{0 . 0 0 4 1}$	0.0619
33	O $7 Y$	$-\mathbf{0 . 6 5 1 4}$	0.0009
34	O $7 Z$	0.0000	$\mathbf{0 . 8 7 9 5}$
35	B $10 S$	0.0016	-0.0113
46	B $10 S$	0.0306	0.0249
47	B $10 X$	0.0542	0.0445
48	B $10 Y$	-0.0862	0.0483
49	B $10 Z$	-0.0370	$\mathbf{0 . 2 0 0 7}$
50	O $13 S$	-0.0065	-0.0035
53	O $13 S$	0.0435	0.0257
54	O $13 X$	0.0328	0.0165
55	O $13 Y$	-0.0059	-0.0321
56	O $13 Z$	0.0232	-0.0422
57			

25 atomic orbitals (AOs) were selected from 89 AOs. ' S, S, X, Y and Z ' represent $1 s, 2 s$, $2 p_{x}, 2 p_{y}$ and $2 p_{z}$. The coefficients in bold are those for the main atomic orbitals.
conclusions cannot be regarded as strict checks and it is therefore reasonable to check the experimental result by a theoretical method (i.e. a molecular-orbital method). It is known that the structure of vitreous $\mathrm{B}_{2} \mathrm{O}_{3}$ consists of planar boroxol rings $\left(\mathrm{B}_{3} \mathrm{O}_{6}\right)$ and BO_{3} triangles (for example, Suzuya et al., 2000). Thus, four types of oxygen are possible:
(i) oxygen contained within a boroxol ring;
(ii) oxygen bridging boroxol rings;
(iii) oxygen bridging two BO_{3} triangles;
(iv) oxygen bridging a boroxol ring and a BO_{3} triangle.

According to an O^{17} NMR study by Youngman et al. (1995), the population fractions of these types of oxygen are $0.5,0.3$, 0.2 and 0 for (i), (ii), (iii) and (iv), respectively, so that the 'two-boroxol ring model' includes 80% of the O atoms in $\mathrm{B}_{2} \mathrm{O}_{3}$ glass. Hence, it may be permissible to choose this 'two-boroxol ring model' to simulate the results of Jellison et al. (1977). Fig. 13 shows the model whose structure was determined using $a b$ initio HF/STO-3G. The B5-O7-B10 'bridging angle' of 130.50° is in good agreement with the value $\left(130^{\circ}\right)$ quoted by Jellison et al. (1977). ${ }^{7}$

The valence calculations were carried out for several values of the twist angle (φ). The calculated valences and the net charges exhibited very little φ dependence, so the results at the equilibrium twist angle ($\varphi=27.78^{\circ}$) are discussed in this section. The total valences from DVX_{α} are 2.005, 2.928 and

[^5]2.050 for $\mathrm{O}(\mathrm{R}), \mathrm{B}, \mathrm{O}(\mathrm{C})$, respectively. Comparing these values with those in Table 2, we can see that for $O(R)$ and B the calculated valences are in good agreement with their 'experimental values', but the value for $\mathrm{O}(\mathrm{C})$ is not. The source of this discrepancy for $\mathrm{O}(\mathrm{C})$ lies mainly in the assumption of a doubly occupied π-orbital for $\mathrm{O}(\mathrm{C})$. Actually, the orbital population of the π-orbital of $\mathrm{O}(\mathrm{C})\left(2 p_{z}\right.$ of O 7$)$ is 1.745, significantly smaller than 2 . In order to find the reasons for this value, the localized molecular orbitals (LMO; Edmiston \& Ruedenberg, 1963) for the molecular orbitals from $a b$ initio HF/STO-3G were calculated using $P C$ GAMESS (strictly speaking, the localized orbitals for DVX_{α} molecular orbitals should be obtained here, but the present version of DVSCAT has no such facility). Table 14 lists the LMOs corresponding to the π-orbitals and the lone-pair

Figure 12
Calculated structure of $\left[\mathrm{Be}_{4} \mathrm{Al}_{4} \mathrm{Si}_{6} \mathrm{O}_{15}(\mathrm{OH})_{22}\right]^{8-}$, a cluster model for beryl, $\mathrm{Al}_{2} \mathrm{Be}_{3}\left(\mathrm{SiO}_{3}\right)_{6}$ (Morosin, 1972).

Figure 13
A model of $\mathrm{B}_{2} \mathrm{O}_{3}$ glass for simulating the work of Jellison et al. (1977). This $\mathrm{B}_{6} \mathrm{O}_{6}(\mathrm{OH})_{4}$ structure was determined with ab initio HF/STO-3G. B5-O8 1.367, B5-O7 1.349, O7-B10 1.349 Å, B5-O7-B10 130.50. Twist angle $\varphi=27.78^{\circ} . \mathrm{O}(\mathrm{R}), \mathrm{O}(\mathrm{C})$ and B are notations used by Jellison et al. (1977). Bond distances are given in \AA.

Table 15
Calculated valences (V) and net charges (c) of $\mathrm{O}(\mathrm{R}), \mathrm{B}$ and $\mathrm{O}(\mathrm{C})$ in $\mathrm{B}_{6} \mathrm{O}_{6}(\mathrm{OH})_{4}$ drawn in Fig. 13.

Method	$\mathrm{O}(\mathrm{R})$		B		$\mathrm{O}(\mathrm{C})$	
	V	c	V	c	V	c
DVX_{α}	2.009	-0.720	2.928	1.064	2.050	-0.703
HF/STO-3G	2.299	-0.420	3.317	0.625	2.316	-0.425
HF/3-21G	1.898	-0.779	2.885	1.166	1.900	-0.793
HF/6-31G	1.773	-0.771	2.923	1.151	1.759	-0.787

orbital of $\mathrm{O}(\mathrm{C})$. Note that non-negligible amounts of $2 p_{z}$ orbital contributions from other atoms are mixed into the π orbital of $\mathrm{O}(\mathrm{C})$ (for example, 0.2007 of B10 Z). That is, the π lone pair orbitals of $\mathrm{O}(\mathrm{C})$ are partly de-localized and it is this that causes the population to be less than 2. [This partial delocalization also occurs on $\mathrm{O}(\mathrm{R})$, but this effect was taken into account in the estimation of the population on the π-orbital of $\mathrm{O}(\mathrm{R})]$. Hence, the valence of $\mathrm{O}(\mathrm{C})$ in Table 2, 1.492, is an underestimated value. The actual value should be close to that of $O(R)$, since there is no large difference between the calculated π-orbital populations of $\mathrm{O}(\mathrm{C})$ and $\mathrm{O}(\mathrm{R})(1.745$ and 1.691, respectively). Thus, the valence of $\mathrm{O}(\mathrm{C})$ should be close to 2 and consequently the net charge of $\mathrm{O}(7)$ should be $c a$ -0.7.

The corrected valence of $O(C)$ can be estimated in another way. There may be few problems in the analysis for the B atom, compared with the analysis for $\mathrm{O}(\mathrm{C})$, since the signambiguity of the asymmetric factor for the electric field gradient makes little difference to the orbital populations on the B atom. An important point is that the B atom π-orbital $\left(2 p_{z}\right)$ has a significant population of 0.360 (see $\S 5.2$). The corresponding calculated values are 0.437 from DVX_{α}, which is not too different from 0.360 . Hence, it is believed that the results for the B atom are essentially reliable and thus the value of its valence (2.945 or 2.949) is correct. Since $O(C)$ bonds to the two B atoms, its valence should be nearly $2 \times$ $2.945 / 3=1.96 \simeq 2$. This conclusion is also applicable to $\mathrm{O}(\mathrm{R})$, since $O(R)$ also bonds to two B atoms. Thus, following the discussion in the previous paragraph, we can conclude that the work of Jellison et al. (1977) suggests that the B and O atoms in $\mathrm{B}_{2} \mathrm{O}_{3}$ glass have valences close to their classical values.

Jellison et al. (1977) provide a criterion which can be used to determine which molecular-orbital method gives the valences which best correspond to the experimental ones. Table 15 compares the valences and the net charges calculated from the four molecular-orbital methods and it is clear that DVX_{α} gives the best match to the experimental values. Hence, at the present stage, we conclude that DVX_{α} gives the best estimates of the actual atomic valences in molecules and solids.
5.6.2. Absolute bond valence for oxides. It should be noted that all the numerical results for the valences $\left(V_{A}^{b}, V_{A}\right)$ in the $M-\mathrm{O}$ systems treated in this paper are close to the absolute values of the oxidation numbers of the atoms involved. For example, the valences of $\mathrm{Be}, \mathrm{B}, \mathrm{Al}$ and Si in Table 2 are 1.96, 2.96, 3.26 and 4.36. The valence of Fe in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is 1.96 (Table 9), in contrast with the values in the Fe^{2+}-pyridine and
Fe^{2+}-cyano complexes. In beryl, the calculated oxygen valences V_{O}^{b} are 1.93 and 1.96 , and the corresponding total valences are 2.05 and 2.07 , respectively. The calculated oxygen valences V_{O}^{b} for $\mathrm{O}(\mathrm{R})$ and $\mathrm{O}(\mathrm{C})$ in $\mathrm{B}_{6} \mathrm{O}_{6}(\mathrm{OH})_{4}$ are 1.88 and 1.91, respectively, and the corresponding total valences V_{O} are 2.01 and 2.05. On the other hand, the values for V_{Al}^{b} and Cl_{b} in $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ are 3.72 and 1.35, respectively. Moreover, it has been found that in $\mathrm{Al}_{2} \mathrm{Br}_{6}$, the valence of Al is 4.06 , which is far from the formal oxidation number for $\mathrm{Al}^{3+} . V_{\mathrm{Si}}^{b}$ values in SiF_{4}, SiCl_{4} and SiBr_{4} are 4.40, 4.63 and 4.95 , respectively: here the stronger covalent character is probably responsible for the larger deviations of the calculated valences from the formal oxidation numbers. The conclusion (see §5.6.1) is that the valences from the DVX_{α} method are close to the experimental values. Hence, it can be predicted that the valences of atoms in oxides are approximately equal to the absolute values of the oxidation numbers of the atoms. This prediction states that the definition (34) is numerically applicable to oxides. Moreover, this explains why the ionic interpretation for the bond-valence rule apparently works well for oxides and why the bondvalence sum rule obeys the electroneutral principle (Pauling, 1960). Of course, in order to examine this prediction, further investigations on the orbital population analysis for atoms in solids are desirable.

6. Concluding remarks

We have seen that the Okada bond order $D_{M X}$ satisfies the three requirements (i), (ii) and (iii) mentioned in $\S 1$, and that (33) brings nearly the same results as the bond valences from the empirical relations. Hence, we conclude that the quantity \boldsymbol{x} referred to in $\S 1$ is the Okada bond order and the relative definition (33) is a quantum-mechanical representation of the bond valence. Consideration of the mechanism of the bondvalence sum rule leads to an understanding of the bondvalence sum rule as a covalent bond effect caused by the tendency of atoms in molecules or crystals to adopt as spherical an electron population state as possible. The magnitude of the d-orbital contribution is an important factor affecting whether the conventional form of the bond-valence sum rule can be used. Moreover, it has been shown that the atomic valences in oxides are possibly close to the absolute values of the oxidation numbers. If we therefore choose the absolute definition as given in (34), the bond valence can be identified as the Okada bond order. This definition may be more chemically significant than the relative definition.

APPENDIX A

A1. Merits of the DVX_{α} method

Application of the DVX_{α} method to the valence analysis is not yet commonplace, but there are at least three factors which favour the use of DVX_{α}. The first factor is that DVX_{α} is easily applicable to all types of compound (not only organic compounds, but also inorganic compounds including transition metal complexes and metal-alloys), as stated in $\S 4$. The
second is that this method gives reasonable Okada bond orders and net charges. Table 16 shows the comparison of the DVSCAT results with ab initio HF results. In this table we can find some unreasonable values (in bold). In the N_{2} molecule the valences of N from $3-21 \mathrm{G}$ and $6-31 \mathrm{G}$ are unreasonably small, since N_{2} is a homonuclear diatomic molecule with a true triple bond. For the C atoms in butadiyne (HCCCCH), valence values greater than four occur for the C atoms (this may be a proper feature of the split-valence-type basis functions). In CCl_{4}, the $3-21 \mathrm{G}$ and $6-31 \mathrm{G}$ calculations result in positive charges on the Cl atoms, also unlikely. On the contrary, the valences from STO-3G (or STO-3G*) are reasonable on the whole, as was pointed out by Lendvay (1989). However, the minimal basis functions give another type of improbable valence. For $\mathrm{LiF}(\mathrm{g})$ STO-3G predicts unreasonably large valences of 1.346 for both Li and F . As this typical example shows, this basis function tends to overestimate the covalent interaction in systems where considerable ionic character is present, consequently yielding unrealistically large valences and small net charges. [This phenomenon may be largely due to the so-called 'basis-set superposition error' (BSSE; Davidson \& Feller, 1986)]. In contrast, for every type of system $D V S C A T$ produces realistic values for both valences and net charges, as shown in Table 16. The final factor is that ab initio HF incorporates Lewis-pairrelated quantities including the significant inner electron contribution. For example, the ab initio HF/STO-3G* calculation for $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}$ gives the orbital populations on $1 s, 2 s$, $2 p_{x}, 2 p_{y}$ and $2 p_{z}$ of the Al as $2.000,1.987,1.962,1.962$ and 1.962 , respectively, all significantly less than 2.000 , except for the $1 s$ population. This result indicates that the $2 s$ and the $2 p$ orbitals are contributing significantly to the $\mathrm{Al}-\mathrm{O}$ bonds. Once the inner electrons are taken into account, the behaviors of the valence electron parts of the Lewis-pair-related quantities, chemically important parts, are almost hidden. Moreover, eliminating the inner electron contributions from output $-B_{A B}$ is impossible since the contents of the $B_{A B}$ are not output. Meanwhile, $D V S C A T$ gives orbital populations of 2.000 for all the inner shells of the Al. Thus, DVSCAT gives results where the valence electron contributions are completely separated from those of the inner electrons.

I carried out the essential part of this study in The Institute of Scientific and Industrial Research in Osaka University from 1978 to 1979 and an opportunity arose to restart this study at the Institute for Fundamental Chemistry (IFC) in 1997. I wish to thank many researchers whose contributions made this paper possible: Professor T. Okadam, Kwansei Gakuin University, for helpful discussions on the spin-coupling matrix theory; Dr Y. Shiota, Kyoto University (now at Kyusyu University), for an introduction to and consultation of $P C$ GAMESS; Professor H. Adachi, Kyoto University, for providing the DVSCAT package; Dr M. Mizuno, Kobe Steel, Ltd (now at Osaka University), for consultation on DVSCAT; Mr K. Nakagawa, Canon Corporation, for providing a source program of $L W S P R$. I also wish to thank the anonymous

Table 16
DVX_{α} gives chemically realistic valences $\left(V_{A}^{b}\right)$ and net charges $\left(c_{A}\right)$.
Values in bold are regarded as unrealistic. STO-3G*, $3-21 \mathrm{G}^{*}$ and $6-31 \mathrm{G}^{*}$ were applied to Si, Na and Cl .

	$\underline{V_{A}^{b}}$					c_{A}			
	A	DVX_{α}	STO-3G	3-21G	6-31G	DVX_{α}	STO-3G	3-21G	6-31G
F_{2}	F	1.000	1.000	1.003	1.003	0.000	0.000	0.000	0.000
N_{2}	N	2.999	3.000	2.791	2.635	0.000	0.000	0.000	0.000
CH_{4}	C	3.967	3.964	3.736	3.840	-0.287	-0.251	-0.787	-0.621
HCCCCH	C_{c}	3.988	3.993	4.180	4.508	0.009	-0.035	-0.260	-0.132
	C_{H}	3.725	3.822	3.833	4.261	-0.141	-0.082	-0.131	-0.291
CO_{2}	C	3.841	3.934	3.606	3.648	0.788	0.465	1.083	0.862
	O	1.921	1.967	1.803	1.824	-0.394	-0.233	-0.541	-0.431
CCl_{4}	C	3.845	3.860	3.638	3.867	0.551	0.138	-0.468	-0.364
	Cl	0.961	0.965	0.909	0.967	-0.138	-0.035	0.117	0.091
CF_{4}	C	3.626	3.856	3.588	3.640	1.188	0.622	1.516	1.384
	F	0.907	0.964	0.897	0.910	-0.297	-0.156	-0.379	-0.346
$\mathrm{H}_{2} \mathrm{O}$	O	1.740	1.908	1.811	1.607	-0.704	-0.331	3.588	-0.792
$\mathrm{Si}(\mathrm{OH})_{4}$	Si	4.288	4.692	4.064	4.088	1.248	0.694	1.395	1.373
	O	1.901	2.082	1.792	1.754	-0.693	-0.391	-0.766	-0.820
BF_{3}	B	2.893	3.300	2.936	2.827	1.099	0.649	1.169	1.201
$\mathrm{LiF}(\mathrm{g})$	Li	0.654	1.346	0.763	0.491	0.646	0.228	0.565	0.743
$\mathrm{NaCl}(\mathrm{g})$	Na	0.842	1.108	0.578	0.623	0.524	0.318	0.703	0.662

referees of this paper for their detailed and helpful reviews, and Kaneka Corporation for sending me to IFC.

References

Aarset, K., Shen, Q., Thomassen, H., Richardson, A. D. \& Hedberg, K. (1999).J. Phys. Chem. A, 103, 1644-1652.

Adachi, H., Tsukada, M. \& Satoko, C. (1978). J. Phys. Soc. Jpn, 45, 875-882.
Armstrong, D. R., Perkins, P. G. \& Stewart. J. J. (1973). J. Chem. Soc. Dalton Trans. pp. 838-840.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. IUCr Monograph on Crystallography 12. Oxford University Press.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Burdett, J. K. \& Hawthorn, F. C. (1993). Am. Mineral. 78, 884-892.
Burdett, J. K. \& McLarnan, T. J. (1984). Am. Mineral. 69, 601-621.
Buss, B. \& Krebs, B. (1971). Inorg. Chem. 10, 2795-2800.
Cooper, W. F., Larsen, F. K. \& Coppens, P. (1973). Am. Miner. 58, 2131.

Coulson, C. A. (1961). VALENCE, 2nd ed. Oxford: Clarendon Press.
Davidson, E. R. \& Feller, D. (1986). Chem. Rev. 86, 681-696.
Dent Glasser, L. S. \& Giovanoli, R. (1972a). Acta Cryst. B28, 519-524.
Dent Glasser, L. S. \& Giovanoli, R. (1972b). Acta Cryst. B28, 760763.

Donnay, G. \& Donnay, J. D. H. (1973). Acta Cryst. B29, 1417-1425.
Edge, R. A. \& Taylor, H. F. (1971). Acta Cryst. B27, 594-601.
Edmiston, C. \& Ruedenberg, K. (1963). Rev. Mod. Phys. 35, 457-465.
Giambiagi, M., Giambiagi, M., Grempel. D. R. \& Heymann, C. D. (1975). J. Chim. Phys. 72, 15-22.

Gibbs, G. V. (1982). Am. Mineral. 67, 421-450.
Gillespie, R. J. \& Nyholm, R. S. (1957). Q. Rev. Chem. Soc. 11, 339380.

Gopinathan, M. S. \& Jug. K. (1983a). Theoret. Chim. Acta (Berlin), 63, 497-509.
Gopinathan, M. S. \& Jug, K. (1983b). Theoret. Chim. Acta (Berlin), 63, 511-527.
Granovsky, A. A. (1999). http://classic.Chem.msu.su/gran/gamess/ index.html.
Hazell, A. C. (1966). Acta Chem. Scand. 20, 165-169.

Jansen, L., Chandran, L. \& Block, R. (1992). J. Mol. Struct. (Theochem.) 260, 81-98.
Jellison, G. E. Jr, Panek, L. W., Bray, P. J. \& Rouse, G. B. Jr (1977). J. Chem. Phys. 66, 802-812.
Julg, A. (1978). Crystals as Giant Molecules: Lecture Notes in Chemistry, edited by G. Berthier, M. J. S. Dewar, H. Fischer, K. Fukui, H. Hartmann, H. H. Jaffé, J. Jortner, W. Kutzelnigg, K. Ruedenberg, E. Scrocco \& W. Zeil, Vol. 9. Berlin, Heidelberg, New York: Springer-Verlag.
Kowada, Y., Tanaka, I., Nakamatsu, H. \& Mizuno, M. (1998). Hazimeteno Denshijoytai Keisan (Electronic Structure Calculations for Beginners). Tokyo: Sankyo-Syuppan; http://www.Sci.hyogo-u.ac.jp/ykowada/.
Kutschabsky, L. (1969). Acta Cryst. B25, 1811-1816.
Lendvay, G. (1989). J. Phys. Chem. 93, 4422-4429.
Löwdin, P. O. (1955a). Phys. Rev. 97, 1474-1489.
Löwdin, P. O. (1955b). Phys. Rev. 97, 1490-1508.
Mayer, I. (1983). Int. J. Quantum Chem. 23, 341-363.
Mayer, I. (1986a). Int. J. Quantum Chem. 29, 73-84.
Mayer, I. (1986b). Int. J. Quantum Chem. 29, 477-483.
Mayer, I. (1987). J. Mol. Struct (Theochem.) 149, 81-89.
Mohri, F. (2000). Acta Cryst. B56, 626-638.
Morimoto, N. (1956). Mineral. J. 2, 1-18.
Morosin, B. (1972). Acta Cryst. B28, 1899-1903.
Mulliken, R. S. (1955). J. Chem. Phys. 23, 1841-1846.
Nakagawa, K. (2000). Adv. Quant. Chem. 37, 365-374.
Newton, M. D. (1977). Applications of Electronic Structure Theory, ch. 6, edited by H. F. Schaefer III. New York: Plenum Press.
Okada, T. (1977). Kagaku no Ryoiki (Chemistry Field), 31, 1007-1015.
Okada, T. \& Fueno, T. (1975). Bull. Chem. Soc. Jpn, 48, 2025-2032.
Okada, T. \& Fueno, T. (1976). Bull. Chem. Soc. Jpn, 49, 1524-1530.
Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Cornell University Press.
Pople, J. A. \& Segal, G. A. (1966). J. Chem. Phys. 44, 3290-3296.
Preiser, C., Lösel, J., Brown, I. D., Kunz, M. \& Skowron, A. (1999). Acta Cryst. B55, 698-711.
Rutherford, J. S. (1998). Acta Cryst. B54, 204-210.
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. \& Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363; http://www.msg.ameslab.gov/GAMESS/ GAMESS.html.

See, R. F., Kruse, R. A. \& Strub, W. M. (1998). Inorg. Chem. 37, 53695375.

Siddarth, P. \& Gopinathan, M. S. (1990). Int. J. Quantum. Chem. 37, 685-699.
The Chemical Society of Japan (1984). Kagaku-binran (Chemistry Data), 3rd ed. Tokyo: Maruzen.
Suzuya, K., Yoneda, Y., Kohara, S. \& Umesaki, N. (2000). Phys. Chem. Glasses, 41, 282-285.

Tossel, J. A. (1987). Phys. Chem. Miner. 14, 320326.

Urusov, V. M. (1995). Acta Cryst. B51, 641-649.
Wiberg, K. B. (1968). Tetrahedron, 24, 1083-1096.
Youngman, R. E., Haubrich, S. T., Zwanzinger, J. W., Janicke, M. T. \& Chmelka, B. F. (1995). Science, 269, 14161420.

Zachariasen, W. H. (1954). Acta Cryst. 7, 305-310.

[^0]: ${ }^{1}$ According to Pauling (1960), the degree of covalent character is estimated by $100 \exp \left[-0.25(\Delta x)^{2}\right] \%$, where Δx is the electronegativity difference.

[^1]: ${ }^{2}$ Here, the 'classical valence of atom A ' is taken as the maximum number of H atoms which can bond to atom A. 'Classical bond order' is the fractional classical valence shared with each bond.
 ${ }^{3}$ A plain description of this theory was given by Okada (1977), but this was written in Japanese and therefore not widely accessible. Moreover, after this paper, Okada and Fueno discontinued their studies in this area.

[^2]: ${ }^{4}$ When using the Heitler-London wavefunction for H_{2}, we obtain $Q_{11}^{0}=Q_{22}^{0}=0, Q_{12}^{0}=1$.

[^3]: ${ }^{5}$ The formulation of the total electron repulsion energy in terms of the Lewiselectron pair theory has not been carried out yet, as far as we are aware.

[^4]: ${ }^{6} \mathrm{HF}$ calculations for highly charged clusters often diverge.

[^5]: ${ }^{7}$ The experimentally determined bridging angles are actually distributed over a wide range in $\mathrm{B}_{2} \mathrm{O}_{3}$ (Suzuya et al., 2000) and thus Jellison et al.'s results for $\mathrm{O}(\mathrm{C})$ are affected by this wide distribution.

